Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
validateパッケージでデータを検証する / Data Validation with v...
Search
松村優哉
February 19, 2022
Programming
0
610
validateパッケージでデータを検証する / Data Validation with validate package
松村優哉
February 19, 2022
Tweet
Share
More Decks by 松村優哉
See All by 松村優哉
はじめての機械学習 / entrance-to-machine-learning2022
y__mattu
2
1.1k
rstanの環境構築 / Set Up rstan
y__mattu
1
1.1k
R言語とGo言語 / R and Go
y__mattu
1
1k
はじめての機械学習 / Entrance to Machine Learning
y__mattu
0
770
平均値と中央値の違いについて
y__mattu
1
880
dplyr 1.0.0の新機能 / dplyr 1.0.0
y__mattu
2
10k
Other Decks in Programming
See All in Programming
Web フロントエンドエンジニアに開かれる AI Agent プロダクト開発 - Vercel AI SDK を観察して AI Agent と仲良くなろう! #FEC余熱NIGHT
izumin5210
3
390
After go func(): Goroutines Through a Beginner’s Eye
97vaibhav
0
230
Your Perfect Project Setup for Angular @BASTA! 2025 in Mainz
manfredsteyer
PRO
0
130
Pythonスレッドとは結局何なのか? CPython実装から見るNoGIL時代の変化
curekoshimizu
4
1.3k
Let's Write a Train Tracking Algorithm
twocentstudios
0
220
Pull-Requestの内容を1クリックで動作確認可能にするワークフロー
natmark
2
450
止められない医療アプリ、そっと Swift 6 へ
medley
1
120
タスクの特性や不確実性に応じた最適な作業スタイルの選択(ペアプロ・モブプロ・ソロプロ)と実践 / Optimal Work Style Selection: Pair, Mob, or Solo Programming.
honyanya
3
140
ててべんす独演会〜Flowの全てを語ります〜
tbsten
1
220
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
130
Django Ninja による API 開発効率化とリプレースの実践
kashewnuts
0
930
AIエージェント時代における TypeScriptスキーマ駆動開発の新たな役割
bicstone
4
1.5k
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
4.8k
RailsConf 2023
tenderlove
30
1.2k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
Typedesign – Prime Four
hannesfritz
42
2.8k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Raft: Consensus for Rubyists
vanstee
139
7.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
610
Transcript
validate パッケージで データを検証する @y__mattu 2022-02-19 HiRoshima.R #7 LT
誰︖ • 松村優哉 • 出⾝: 計量経済、ベイズ統計、 因果推論 • お仕事: データサイエンティスト&
データエンジニア in 広告会社 • ⾔語: R, Python • Tokyo.R, Japan.R運営 • 近況:2⽉に転職しました︕
宣伝 Rユーザのための RStudio[実践]⼊⾨ 第2版 好評発売中!!
今⽇のお話 • 統計的データクリーニングについて • validateパッケージの紹介
データクリーニングとは • データクリーニング≒データ前処理の最も基本的な部分 • 数値表現の統⼀ • ⽇付型の統⼀ • ⽂字列の正規化・前処理 •
⽋測データの特定・補完 • エラーデータの特定・修正 • 今⽇の話題は、エラーデータの特定、つまりデータ検証がメイン 統計的な処理が必要な領域
データ検証の必要性 • データは意図せず変化してしまう • 前処理⼯程のミス • 集計のミス • そもそもデータソースの時点で変なデータが含まれている •
適当なタイミングで、⽬の前のデータが「正しいか」の検証(バリ デーション)を⼊れると良い データの読み込み データの前処理 分析・可視化 処理1 処理2 処理3 検証 検証 検証
validateパッケージ • CRANからインストール • 使うデータをロード
retailersデータ • 架空の⼩売業者の財務データ
check_that()による簡単なチェック ルールを記述。ここでは以下の2つ - 売上⾼は0より⼤きい - 従業員⼀⼈当たりの⼈件費は50(50,000ギルダー)未満
検証結果の可視化
検証ルール作成、適⽤、結果確認の分離 検証 ルール 作成 適⽤ 確認 validate::validator() validate::confront() summary(), validate::aggregate()
ルール 作成 適⽤
検証ルールの作成⽅法(発展編1) • レコード間での⽭盾のチェック • 例: 市と通りが同じなら郵便版後も同じでなくてはならない • 簡単なデータで検証 2レコード⽬が間違い
検証ルールの作成⽅法(発展編1) • レコード間での⽭盾のチェック • 例: 市と通りが同じなら郵便版後も同じでなくてはならない ルールをチルダでつなぐ
検証ルールの作成⽅法(発展編2) • マクロの定義 • ルールが多くなると、似たようなルール(平均が0以上など)が多くなって きて、書くのが⾯倒 := 演算⼦で共通ルールを 作っておけば、再利⽤可能
検証ルールの作成⽅法(発展編3) • 変数グループ • a>=m, b>=mみたいに「m(平均)が0以上」は共通してるので何⾏も書き たくない • 以下の2つは同じ
検証結果をデータフレームとして出⼒ • aggregate() • retailorデータの例に戻る ルール 作成 適⽤ 確認
検証ルールを外部ファイルで定義 • validator()に渡す検証ルールは外部ファイル(yaml)にて定義可能 • ルールが多くなってくるとこちらのほうが便利かも rules.yml
まとめ • データ前処理の途中で検証(バリデーション)をするのは⼤切 • Rでデータ検証ならvalidateパッケージが便利
参考資料 • R⾔語 - データ検証パッケージ "validate” • validateパッケージのドキュメント • 『統計的データクリーニングの理論と実践』
Enjoy!