Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ふんわり理解するロジスティック回帰
Search
Yamamoto
June 05, 2024
Technology
0
76
ふんわり理解するロジスティック回帰
所属する団体で使用予定のスライドです。
Yamamoto
June 05, 2024
Tweet
Share
More Decks by Yamamoto
See All by Yamamoto
ゼロから始めるニューラルネットワーク CNN編
yamamotoeigo
0
120
Other Decks in Technology
See All in Technology
LLM時代の検索とコンテキストエンジニアリング
shibuiwilliam
2
650
文字列の並び順 / String Collation
tmtms
1
110
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
29
14k
Cloud WANの基礎から応用~少しだけDeep Dive~
masakiokuda
3
120
僕たちが「開発しやすさ」を求め 模索し続けたアーキテクチャ #アーキテクチャ勉強会_findy
bengo4com
0
2.6k
プロダクトエンジニアリングで開発の楽しさを拡張する話
barometrica
0
210
Exadata Database Service on Dedicated Infrastructure セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
1
330
サービスロボット最前線:ugoが挑むPhysical AI活用
kmatsuiugo
0
130
ウォンテッドリーのアラート設計と Datadog 移行での知見
donkomura
0
150
Amazon Qで2Dゲームを作成してみた
siromi
0
170
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.7k
GISエンジニアよ 現場に行け!
sudataka
1
140
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Navigating Team Friction
lara
188
15k
Being A Developer After 40
akosma
90
590k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
BBQ
matthewcrist
89
9.8k
Why Our Code Smells
bkeepers
PRO
338
57k
Agile that works and the tools we love
rasmusluckow
329
21k
GitHub's CSS Performance
jonrohan
1031
460k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Transcript
ロジスティック回帰 総合理⼯学研究科エレクトロニクス系⼯学研究室 ⼤規模情報処理システム研究室 ⼭本 瑛悟
話すこと ロジスティック回帰について シグモイド関数について パラメータの最適化について
話すこと ロジスティック回帰について シグモイド関数について パラメータの最適化について
ロジスティック回帰とは ロジスティック回帰について • ロジスティック回帰は基本的にはニ値分類に使⽤される • 「回帰」と呼ばれているが実際は「分類」である。 回帰と分類 • 分類:離散値を出⼒する(クラスとかカテゴリとか) •
回帰:連続値を出⼒する(テストの点数とか売り上げとか)
線形回帰とロジスティック回帰 線形回帰とロジスティック回帰の⼤きな違い • 線形回帰:(連続値である)予測値を出⼒する • ロジスティック回帰:発⽣確率を出⼒する 例) 線形回帰:Aさんのテストの点数を予測 ロジスティック回帰:Aさんがテストに合格するかを予測
重回帰 ⋯ 𝑥! 𝑥" 𝑥# ∑ 𝑤" 𝑤! 𝑤# 𝑦
= 𝑓(𝑥) 𝑥! : ⼊⼒ 𝑏! : ⼊⼒に対する重み 𝑦: 出⼒ 𝑧 = 𝑏 + * !"# $ 𝑤! 𝑥! 𝑥 𝑦 𝑓(𝑥)
ロジスティック回帰 ⋯ 𝑥! 𝑥" 𝑥# ∑ 𝑤" 𝑤! 𝑤# 𝑦
= 𝑓(𝑥) 𝑥! : ⼊⼒ 𝑏! : ⼊⼒に対する重み 𝑓(𝑥): 出⼒ 𝑓(𝑧): (標準)シグモイド関数 𝑧 = 𝑏 + * !"# $ 𝑏! 𝑤! 𝑓(𝑧) 活性化関数
話すこと ロジスティック回帰について シグモイド関数について パラメータの最適化について
シグモイド関数 • シグモイド関数の出⼒は 0~1の間に収まる → 確率として解釈 例) • ある学⽣のテストの得点𝑥に対して線型結合を⾏う。 •
シグモイド関数を適⽤して、合格する確率を計算する。 𝑓(𝑧) = 1 1 + 𝑒"#
シグモイド関数の理解 オッズ • ある事象が起こる確率と起こらない確率の⽐ → ある事象の起こりやすさ • 事象が起こる確率を𝑝とした場合以下の式で表される 𝑝 1
− 𝑝
シグモイド関数の理解 試験の合否のオッズを考える。 試験に合格:𝑝 試験に不合格:1 − 𝑝 𝑝 1 − 𝑝
合格数 1 8 不合格数 8 1 オッズ 0.125 𝟏 𝟖 8
シグモイド関数の理解 試験の合否のオッズを考える。 試験に合格:𝑝 試験に不合格:1 − 𝑝 𝑝 1 − 𝑝
合格数 1 8 不合格数 8 1 オッズ 0.125 𝟏 𝟖 8 1 2 < 𝑝 0 ≤ 𝑝 ≤ 1 2 :(1, +∞) : [0, 1]
シグモイド関数の理解 ロジット変換(ロジット関数) 𝑦 = log 𝑝 1 − 𝑝 •
対数関数を使うと尺度を合わせることができる → 対数を取ると対称性が出るので⽐較しやすくなる 勝利数 1 8 敗北数 8 1 ロジット 関数 -2.0794 2.0794
線形回帰とロジスティック回帰 線形回帰とロジスティック回帰の⼤きな違い • 線形回帰:(連続値である)予測値を出⼒する • ロジスティック回帰:発⽣確率を出⼒する 例) 線形回帰:Aさんのテストの点数を予測 ロジスティック回帰:Aさんがテストに合格するかを予測
(標準)シグモイド関数の理解 ロジット関数の逆関数を取る 𝑦 = log 𝑝 1 − 𝑝 𝑒%
= 𝑝 1 − 𝑝 (1 − 𝑝)𝑒% = 𝑝
(標準)シグモイド関数の理解 𝑦 = log 𝑝 1 − 𝑝 𝑒$ =
𝑝 1 − 𝑝 (1 − 𝑝)𝑒$ = 𝑝 𝑒% = 𝑝(1+𝑒%) 𝑝 = 𝑒% 1 + 𝑒% 𝑝 = 𝑒% 3 𝑒&% 1 3 𝑒&% + 𝑒% 3 𝑒&% 𝑝 = 1 𝑒&% + 1
話すこと ロジスティック回帰について シグモイド関数について パラメータの最適化について
ロジスティック回帰 ⋯ 𝑥! 𝑥" 𝑥# ∑ 𝑤" 𝑤! 𝑤# 𝑦
= 𝑓(𝑥) 𝑥! : ⼊⼒ 𝑏! : ⼊⼒に対する重み 𝑓(𝑥): 出⼒ 𝑓(𝑧): (標準)シグモイ ド関数 𝑧 = 𝑏 + * !"# $ 𝑤! 𝑥! 𝑓(𝑧) 活性化関数 𝑓(𝑧) = 1 1 + 𝑒"#
パラメータの最適化 • ロジスティック回帰では最尤推定法を⽤いる。 • 最尤推定法は確率論的モデルのパラメータを変化させて、観測デー タにもっともよくあてはまるところを探索する⼿法。 例) • 1~100の実数の⽬が出る不思議なサイコロを10回降る •
正規分布に従うと仮定 • このサイコロはどんな⽬を出しやすい?出しにくい?
パラメータの最適化 𝑓 𝑥 = 1 2𝜋𝜎! 𝑒𝑥𝑝 − 𝑥 −
𝜇 ! 2𝜎! 正規分布の確率密度関数 𝑥! : ⼊⼒ 𝜇: 平均 𝜎$: 標準偏差 𝐿 𝜇, 𝜎! = 9 %&" "' 1 2𝜋𝜎! 𝑒𝑥𝑝 − 𝑥% − 𝜇 ! 2𝜎! 尤度関数
パラメータの最適化 𝑥! : ⼊⼒ 𝜇: 平均 𝜎": 標準偏差 𝐿 𝜇,
𝜎" = . !#$ $% 1 2𝜋𝜎" 𝑒𝑥𝑝 − 𝑥 − 𝜇 " 2𝜎" 尤度関数 𝜇と𝜎$を調整して最も尤度 が⾼くなるものを選ぶ!
シグモイド関数の理解 オッズ • ある事象が起こる確率と起こらない確率の⽐ → ある事象の起こりやすさ • 事象が起こる確率を𝑝とした場合以下の式で表される 𝑝 1
− 𝑝
(標準)シグモイド関数の理解 𝑦 = log 𝑝 1 − 𝑝 𝑒$ =
𝑝 1 − 𝑝 (1 − 𝑝)𝑒$ = 𝑝 𝑒% = 𝑝(1+𝑒%) 𝑝 = 𝑒% 1 + 𝑒% 𝑝 = 𝑒% 3 𝑒&% 1 3 𝑒&% + 𝑒% 3 𝑒&% 𝑝 = 1 𝑒&% + 1
最尤推定法 𝐿 𝑤, 𝑏 = & !"# $ 𝑝 !
%% 1 − 𝑝! #&%% 尤度関数 𝑥! : ⼊⼒ 𝑦! : ⼊⼒{0, 1} 𝑝! : シグモイド関数の出⼒ log 𝐿 𝑤, 𝑏 = log & !"# $ 𝑝 ! %% 1 − 𝑝! #&%% log 𝐿 𝑤, 𝑏 = - !"# $ 𝑦! log 𝑝! − 1 − 𝑦! log 1 − 𝑝! (ロジスティック回帰はベルヌーイ分布を仮定)
最尤推定法 • パラメータがどれだけモデルを説明できているか → モデルの予測が実際のラベルからどれだけ離れているか • クロスエントロピー誤差と呼ばれる。 • 解析的に解くことができない 𝐽
𝑤, 𝑏 = − log 𝐿 𝑤, 𝑏 = − - !"# $ 𝑦! log 𝑝! − 1 − 𝑦! log 1 − 𝑝!
パラメータの最適化 前スライドの式は解析的に解けない → 勾配降下法などの数値解析的なアプローチ 勾配降下法 • ⽬的関数の勾配(微分)を利⽤して、関数が最も急速に減少する⽅ 向を探索するアプローチ • 最急降下法
• SGD • Adam
パラメータの最適化 最適化したいパラメータは 𝑤, 𝑏の⼆つなのでそれぞれについて微分する。 𝐽 𝑤, 𝑏 = − <
%&" # 𝑦% log 𝑝% − 1 − 𝑦% log 1 − 𝑝% 𝑤 ≔ 𝑤 − 𝜂 𝜕𝐽 𝜕𝑤 𝑏 ≔ 𝑏 − 𝜂 𝜕𝐽 𝜕𝑏 𝜂: 学習率
パラメータの最適化 𝑓 𝑥 = 𝑥 − 2 ! + 1
𝜕𝑓 𝜕𝑥 = 2(𝑥 − 2) 初期値 𝑥 = 5, 𝜂 = 0.8 𝑥5 = 𝑥 − 𝜂 A 2(𝑥 − 2) 𝑥5 = 5 − 0.8 A 2 5 − 2 𝑥5 = 0.2
パラメータの最適化 𝜂 = 0.8 𝜂 = 0.2
おわり おさらい • ロジスティック回帰は確率を出⼒する。 → シグモイド関数によって0~1の実数値を出⼒ • 最尤推定法、勾配降下法を⽤いてパラメータを最適化