Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML@Loft リポジトリをまるごとAIでレビューする
Search
Kawataki Yoshikazu
October 30, 2024
Technology
1
320
ML@Loft リポジトリをまるごとAIでレビューする
ML@Loft - コンテンツレビューにおけるLLM活用のリアル で発表したスライド資料
Kawataki Yoshikazu
October 30, 2024
Tweet
Share
Other Decks in Technology
See All in Technology
Platform Engineering for Private Cloud
cote
PRO
0
120
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
8.1k
入社半年で PTE に! 元海外在住者が語る Google Cloud × G-genで 成長する秘訣
risatube
PRO
0
120
Amazon Bedrock Knowledge basesにLangfuse導入してみた
sonoda_mj
2
430
AIは脅威でなくチャンス。 AIと共に進化するエンジニアの成長戦略 / geeksai-2025-spring
carta_engineering
0
400
OCI Oracle Database Services新機能アップデート(2024/12-2025/02)
oracle4engineer
PRO
2
140
Webブラウザのセキュリティ対策に役立つぞ!!~DevToolsの使い方~
masakiokuda
0
120
OCI IAM Identity Domains Entra IDとの認証連携設定手順 / Identity Domain Federation settings with Entra ID
oracle4engineer
PRO
2
1.4k
LangGraph × Bedrock による複数の Agentic Workflow を利用した Supervisor 型のマルチエージェントの実現/langgraph-bedrock-supervisor-agent
ren8k
4
560
UDDのすすめ
maguroalternative
0
580
RubyKaigi で得た課題解決法・美意識・モチベーション
morihirok
0
130
EM初心者として半年間マネジャーをやってみて分かったこと
sansantech
PRO
0
130
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Docker and Python
trallard
44
3.3k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
14
1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
134
33k
How to Ace a Technical Interview
jacobian
276
23k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Building Adaptive Systems
keathley
40
2.4k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Become a Pro
speakerdeck
PRO
26
5.2k
Statistics for Hackers
jakevdp
797
220k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
11
1.4k
Transcript
© EXNOA LLC 1 リポジトリをまるごと AIでレビューする Long Contextモデルを利用したレビューシステムの紹介
© EXNOA LLC • 合同会社EXNOA • 技術統括本部 技術推進部 サーバーグループ •
川瀧 嘉和 自己紹介 2
© EXNOA LLC 背景と課題 • 自社でパブリッシュするゲームタイトルの技術面のレビューを横断的に 行っているが、様々な言語、アーキテクチャやプラットフォームのものが あり、レビュワーの技術スタックでカバーしきれないことある。 • 比較的短期間にアプリケーションやインフラストラクチャーなど、資料物
量が多く、幅広い範囲をレビューする必要があり、全てを網羅的にレ ビューしきれない場合がある。 3
© EXNOA LLC レビューシステム概要 本システムは、LongContextモデルを活用 し、リポジトリ全体を単一のコンテキスト として捉え、複数の評価基準に基づいて包 括的に分析します。 これにより、プロジェクト全体の文脈を考 慮した、改善提案を自動生成するレビュー
ツールです。 4
© EXNOA LLC アーキテクチャ概要 5 Amazon Web Services、“Powered by AWS”ロゴ、[およびかかる資料で使用されるその他のAWS商標]
は、 米国その他の諸国における、 Amazon.com, Inc.またはその関連会社の商標です。 • シンプルなECSによる構成 • WebインタフェースはGradioを採用 • 処理部分はフルスクラッチで開発
© EXNOA LLC レビュープロセス概要 レビュープロセスの中で Claude 3.5 Sonnet と Gemini
1.5 Proを使用 ・レビュー対象ファイルリストの作成 ・レビューの実施 ・レビュー結果の評価 6 レビュー対象ファイルリスト作成 Gemini レビュー用プロンプトを構築 レビューを実行 Claude Gemini OR 提案を評価 有効? Claude Gemini OR はい いいえ 提案に追加 提案を破棄 結果を出力 視点ごとのレビュー 提案の評価とフィルタリング
© EXNOA LLC 試しにvllmをレビューしてみました 7 https://github.com/vllm-project/vllm.git
© EXNOA LLC 8
© EXNOA LLC 9
© EXNOA LLC 10
© EXNOA LLC 11
© EXNOA LLC 提案の一例 12
© EXNOA LLC 技術的なポイント • AIによる回答に一貫性をもたせキャッシュできるよう常にTemperature=0 • コンテキスト長が長くなったと言っても、一度に全体を取り込めないリポジトリは多い • レビューするファイルそのものもAIに選定させて無駄なファイルを除外
• 出力コンテキストが長くなるとJSONで出力が不安定になる • マークダウンで出力し、正規表現で解析 • 地道なプロンプトのチューニング • いろいろなリポジトリをレビューにかけ繰り返し調整 13
© EXNOA LLC メリットと効果 • 操作が簡単で誰でもAIレビューの提案出力が可能になった。 • 関連した複数のファイルを横断する指摘や提案もしてくれる。 • レビュワー担当者の技術スタックによらず一定精度のレビューが可能になっ
た。 • 提案の再確認は必要だが、確実にレビュー品質は向上した。 • 精度の高いモデルを入れ替えるだけで、レビュー精度の向上が期待できる。 14
© EXNOA LLC 課題 • 担当者の技術スタックによらずレビューはできるものの、提案内容の妥当 性を人間が評価できる必要がある。 • レビュー対象ファイルリストの選定の精度がファイルパスに依存してしま う。
• CodacyやSonarQubeなどの競合になると思われるサービスとの比較がで きていない。 15
© EXNOA LLC まとめ • LongContextモデルを利用することで、プロジェクト全体を包括的に レビューすることが可能になった。 • Claudeをはじめ世の中には様々なモデルが公開されてきているので、 その時の最善のものを利用することで、より高精度なレビューを実現
できるようになる。 • AIによるレビューはできても最終的に人の確認は必要。 16