Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Systematically Adapting Machine Translation for...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
youichiro
March 27, 2018
Technology
0
88
Systematically Adapting Machine Translation for Grammatical Error Correction
文献紹介(2018-03-27)
長岡技術科学大学
自然言語処理研究室
youichiro
March 27, 2018
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.6k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
120
Multi-Agent Dual Learning
youichiro
1
190
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
140
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
160
勉強勉強会
youichiro
0
97
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
210
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
190
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
220
Other Decks in Technology
See All in Technology
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
150
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
Digitization部 紹介資料
sansan33
PRO
1
6.8k
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
110
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
240
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
440
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
270
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.9k
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
290
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
120
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
150
Featured
See All Featured
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
Context Engineering - Making Every Token Count
addyosmani
9
660
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Leo the Paperboy
mayatellez
4
1.4k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
HDC tutorial
michielstock
1
380
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
WCS-LA-2024
lcolladotor
0
450
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
How to Talk to Developers About Accessibility
jct
2
130
Transcript
Systematically Adapting Machine Translation for Grammatical Error Correction Courtney Napoles
and Chris Callison-Burch Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 345–356, 2017 文献紹介(2018/03/27) 長岡技術科学大学 自然言語処理研究室 小川 耀一朗 1
概要 l 英語学習者作⽂の⽂法誤り訂正⼿法を提案 l 統計的機械翻訳(SMT)を⽂法誤り訂正に適⽤ l 少ない訓練データにおいて最⾼性能のモデルに匹敵する 性能を⽰した 2
誤り訂正のアプローチ ルールベース(rule-based system) 誤りタイプの分類器(classifiers targeting specific error types) 統計的機械翻訳(statistical machine
translation) ニューラル機械翻訳(neural machine translation) 3 ࠷ઌ (Yuan and Briscoe, 2016)
提案手法: SMEC l ⽂法誤り訂正に適した処理をSMTと組み合わせる uスペルミス訂正ルールを追加 u訂正操作のスコア素性 u⽂法誤り訂正の適した評価指標でチューニング を適⽤ 4
提案手法: SMEC uスペルミス訂正ルール *1 u名詞の単数形・複数形の変換*2(singular ⇆ plural) u動詞の基本形、3⼈称単数形、過去形、過去分詞形、進⾏ 形の変換*2(wake, wakes,
woke, woken, waking) *1: PyEnchantを使⽤ *2: RASPʼs morphological generator, morphg (Minnen et al., 2001) を使⽤ 5
提案手法: SMEC u訂正操作のスコアを素性 に⽤いる uSMTの最適化 Ø BLEUではなくGLEU 6
実験設定 l SMT: hierarchical phase-based translation model with Thrax (Weese
et al., 2011) l 訓練データ:Lang-8 corpus(1000kペア) l 開発データ:JFLEG tuning set(751ペア) l テストデータ:JFLEG test set(747ペア) l ⾔語モデル:English Gigaword 5-gram LM 7
訂正実験の結果 • Sp. Baseline: スペルミス訂正モデル • MT baseline: 特別な素性を⽤いずにBLUEで最適化 •
YB16: 最⾼性能のNMTモデル(CLC corpus: 2000kペア) Ø 最⾼性能と同じくらいの性能を⽰す 8
コンポーネントの比較 • SMEC –GLEU: BLEUでSMTを最適化 • SMEC –feats:特別な素性を⽤いない • SMEC
–sp:スペルミス訂正ルールを⽤いない Ø スペル訂正による効果が⼤きい 9
まとめ n 統計的機械翻訳(SMT)を⽂法誤り訂正に適⽤ l スペル訂正ルールの追加 l 訂正操作のスコア素性 l GLEUによるSMTの最適化 を適⽤
n 半分の訓練データで、最⾼性能モデルの性能に達した 10