Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
小規模誤りデータからの日本語学習者作文の助詞誤り訂正
Search
youichiro
April 27, 2017
Technology
0
150
小規模誤りデータからの日本語学習者作文の助詞誤り訂正
平成29年4月28日
文献紹介
長岡技術科学大学 自然言語処理研究室
youichiro
April 27, 2017
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.5k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
98
Multi-Agent Dual Learning
youichiro
1
170
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
120
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
140
勉強勉強会
youichiro
0
87
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
190
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
170
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
200
Other Decks in Technology
See All in Technology
DeNA での思い出 / Memories at DeNA
orgachem
PRO
3
1.7k
モバイルアプリ研修
recruitengineers
PRO
4
500
DuckDB-Wasmを使って ブラウザ上でRDBMSを動かす
hacusk
1
110
イオン店舗一覧ページのパフォーマンスチューニング事例 / Performance tuning example for AEON store list page
aeonpeople
2
310
夢の印税生活 / Life on Royalties
tmtms
0
290
TypeScript入門
recruitengineers
PRO
26
7.9k
実践アプリケーション設計 ②トランザクションスクリプトへの対応
recruitengineers
PRO
4
540
『FailNet~やらかし共有SNS~』エレベーターピッチ
yokomachi
1
100
Backboneとしてのtimm2025
yu4u
4
1.6k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
8.6k
あなたの知らない OneDrive
murachiakira
0
240
自社製CMSからmicroCMSへのリプレースがプロダクトグロースを加速させた話
nextbeatdev
0
150
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
Why Our Code Smells
bkeepers
PRO
338
57k
For a Future-Friendly Web
brad_frost
179
9.9k
Typedesign – Prime Four
hannesfritz
42
2.8k
A Tale of Four Properties
chriscoyier
160
23k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
GraphQLとの向き合い方2022年版
quramy
49
14k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Music & Morning Musume
bryan
46
6.7k
Transcript
小規模誤りデータからの日本語学習者 作文の助詞誤り訂正 今村 賢治・斎藤 邦子・貞光 九月・西川 仁 自然言語処理, Vol. 19,
No. 5, pp. 381-400, 2012 文献紹介 平成29年4月28日 長岡技術科学大学 自然言語処理研究室 小川耀一朗
概要 • 日本語学習者作文の助詞の誤りを自動訂正する • 大規模な学習者作文コーパスを集めるのは難しい • 少量の学習者作文から獲得したn-gram二値素性と、大規 模コーパスから獲得した言語モデル確率の併用 → 再現率の向上
• 自動生成した疑似誤り文を訓練コーパスに追加 → 安定した精度向上 2/15
日本語学習者の誤り傾向 日本語学習者37名から、2770文の学習者作文を収集 日本語母語話者が作文の誤りを訂正 訂正が可能:2171文 誤りの発生箇所:4916箇所 (大分類) - 文法誤り:54% - 語彙誤り:28%
- 表記誤り:16% - その他:複数の誤りが混在 3 (小分類) - 助詞・助動詞誤り:33% - カタカナ語誤り:11% - 単語選択(類義語)の誤り:10% /15
日本語学習者の誤り傾向 誤りの出現頻度の高い助詞誤りを訂正対象とした 助詞誤り - 置換誤り:74% - 助詞のぬけ:17% - 余分な助詞の出現:9% 原文を置換、挿入、削除することにより誤り訂正を行う
4/15
誤り訂正のベース手法 識別的系列変換 = 識別モデルを用いた句に基づく統計翻訳(CRF) + 挿入、削除操作への拡張 + 言語モデルを扱う拡張 5/15
誤り訂正のベース手法 識別的系列変換では2種類の素性を用いる ・マップ素性:入力と出力のフレーズ対応度を測る (翻訳モデル) ・リンク素性:出力単語列の日本語としてのもっともらしさを測る (言語モデル) 6/15
誤り訂正のベース手法 識別的系列変換では2種類の素性を用いる ・マップ素性:入力と出力のフレーズ対応度を測る (翻訳モデル) ・リンク素性:出力単語列の日本語としてのもっともらしさを測る (言語モデル) ↓ ・ n-gram二値素性 ・
言語モデル確率 7/15
誤り訂正のベース手法 識別的系列変換では2種類の素性を用いる ・マップ素性:入力と出力のフレーズ対応度を測る (翻訳モデル) ・リンク素性:出力単語列の日本語としてのもっともらしさを測る (言語モデル) ↓ ・ n-gram二値素性 ・
言語モデル確率 出力単語列のn-gram確率の対数値を実数素性として使用 訓練コーパスに限らず大量の文から構築できる 訓練コーパスに出現しなくてもスコアを与えることができる 8/15
提案手法 ・ n-gram二値素性 ・ 言語モデル確率 の2種類のリンク素性を併用することを提案 言語モデルの構築に大規模な日本語コーパスを適用するこ とで、未知テキストに対し頑健な修正が行える 9/15
実験1 日本語平文コーパスの利用 学習者作文コーパスから助詞誤りのみを抽出(1087箇所) 言語モデル:WikipediaとCentOS5日本語マニュアルから527,151文 評価方法: ・コーパスを5分割交差検定 ・適合率、再現率、F値 ・相対向上数 (訂正によって品質が)向上した助詞数 –
悪化した助詞数 10/15
実験結果 11/15
疑似誤り文によるペア文の拡張 収集した日本語コーパスの文を学習者作文のように誤らせる 誤った助詞とその訂正候補を逆に適用する 実誤りコーパスでの助詞誤りの発生確率に従って誤らせる 自動生成した疑似誤りの分布を、実際の誤りの確率分布に近づける → 素性空間拡張法(Daume Ⅲ 2017)を用いる 12/15
実験2 疑似誤り文によるペア文の拡張 疑似誤りコーパス: 言語モデル作成用コーパスから10,000文取得して生成 誤り発生確率: 実誤りコーパス上での相対頻度を倍率1.0とし、倍率0.0〜2.0まで変化さ せて実験 評価方法: ・コーパスを5分割交差検定 ・適合率、再現率
・相対向上数 (訂正によって品質が)向上した助詞数 – 悪化した助詞数 13/15
実験結果 ・TRG:実誤りコーパスのみを使用(ベースライン) ・SRC:疑似誤りコーパスのみを使用 ・ALL:実誤りコーパス+疑似誤りコーパス ・AUG:疑似誤りコーパスと実誤りコーパスを素性空間拡張法によりドメイ ン適応(提案手法) 14
まとめ • 日本語学習者の日本語作文における、助詞誤り訂正法を 提案した • n-gram二値素性と言語モデル確率を併用し、誤り訂正の再 現率を向上させた • 学習者作文を模した疑似誤り文を自動生成し、学習コーパ スに追加する際にドメイン適応を併用することで、誤り発生
確率によらず安定した精度向上ができる 15/15