Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Understanding Back-Translation at Scale
Search
ysasano
February 12, 2019
Technology
5
2.8k
Understanding Back-Translation at Scale
機械翻訳のデータ拡大手法の一つである逆翻訳について、大量データで評価するとどうなるか検証した論文を紹介します。
ysasano
February 12, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
KubeCon NA 2024 Recap: How to Move from Ingress to Gateway API with Minimal Hassle
ysakotch
0
200
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
530
DevFest 2024 Incheon / Songdo - Compose UI 조합 심화
wisemuji
0
100
権威ドキュメントで振り返る2024 #年忘れセキュリティ2024
hirotomotaguchi
2
740
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
480
レンジャーシステムズ | 会社紹介(採用ピッチ)
rssytems
0
150
日本版とグローバル版のモバイルアプリ統合の開発の裏側と今後の展望
miichan
1
130
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
170
新機能VPCリソースエンドポイント機能検証から得られた考察
duelist2020jp
0
220
多領域インシデントマネジメントへの挑戦:ハードウェアとソフトウェアの融合が生む課題/Challenge to multidisciplinary incident management: Issues created by the fusion of hardware and software
bitkey
PRO
2
100
複雑性の高いオブジェクト編集に向き合う: プラガブルなReactフォーム設計
righttouch
PRO
0
110
私なりのAIのご紹介 [2024年版]
qt_luigi
1
120
Featured
See All Featured
Designing on Purpose - Digital PM Summit 2013
jponch
116
7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Automating Front-end Workflow
addyosmani
1366
200k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Rails Girls Zürich Keynote
gr2m
94
13k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
66k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
The Pragmatic Product Professional
lauravandoore
32
6.3k
Transcript
Understanding Back-Translation at Scale Yasumasa Sasano (@SquirrelYellow) ٯ༁จͷσʔλΛಡΉ Edunov et
al. 2018ˏEMNLP 2018
Back-Translation = BT ͱԿ͔ 5BSHFU จষσʔλ 4PVSDF จষσʔλ ֶश ٯ༁Ϟσϧ
BT https://qiita.com/tkmaroon/items/4b8f469db1534d5e265b ͪ͜ΒͷهࣄͷදݱΛआΓ·ͨ͠ (1) ຊ໋ͱٯํͷ༁ϞσϧΛֶश(ӳͳΒӳ)
5BSHFU จষσʔλ 4PVSDF จষσʔλ 5BSHFU ୯ݴޠσʔλ 4PVSDF ߹ 4ZOUIFUJD
୯ݴޠσʔλ ਪ ٯ༁Ϟσϧ BT Back-Translation = BT ͱԿ͔ (2) BTΛͬͯσʔλΛ૿͢
5BSHFU จষσʔλ 4PVSDF จষσʔλ ຊ໋Ϟσϧ 5BSHFU ୯ݴޠσʔλ 4PVSDF ߹ 4ZOUIFUJD
୯ݴޠσʔλ ֶश Back-Translation = BT ͱԿ͔ (3) ૿ͨ͠σʔλͰֶश จʹॻ͍ͯͳ͍͕ɺΘ͟Θ͟ʮٯʯ༁͢Δͷ ਖ਼͍͠จষΛڭࢣʹ࠷దԽ͍ͨ͠ͱ͍͏͜ͱͩͱߟ͑Δ
BTͰେ෯ਫ਼UPͱʹ http://deeplearning.hatenablog.com/entry/back_translation
͜ͷจΛબΜͩಈػ ࣮৽ख๏ͷఏҊจͰͳ͍ طଘͷॾख๏ΛେྔσʔλͰධՁ͢ΔͱͲ͏ͳΔ͔ݕূ at Scale σʔλ֦େʹର͢ΔݕূσʔλΛಡΜͰ͍ٞͨ͠ BTҰछͷσʔλ֦େ - ࣄͷ্ؔɺࠓ͋ΔσʔλΛϑϧʹ׆͔͢ಈػ͕͋Δ -
ͲΜͳσʔλ֦େ͕༗ޮ͔ղ໌͞Ε͍ͯͳ͍෦͕ଟ͍ͷͰڵຯ͕͋Δ ͷ͕ಈػ
ฆΕ͕ͳ͍Α͏ʹ ΤϏσϯε จͷओு ݸਓͷॴײ ؾʹͳΔϙΠϯτ
Synthetic data generation method #5Ͱ࡞Δ߹σʔλʹ͍ͭͯ
߹σʔλͷ࡞ΓํʹΑΔҧ͍ΛධՁ Greedy Search ෩अ ෩अ פ͍ פ͍ ࠓ ͷ ෩अ
פ͍ ࡢ Beam Search ArgmaxΛ͏ͱ༁จͷଟ༷ੑ͕ͳ͘ͳͬͯ·͍ͣ ࠓ ͷ ෩अ פ͍ ࡢ εςοϓຖʹҐΛ ֬ఆͯ࣍͠ͷ୯ޠ ௨͠Ͱߴ֬ͷΛબ શ୳ࡧແཧͳͷͰ Beam ༗ݶ෯ Ͱ୳ࡧ 1Ґ લޙ݅1Ґ Greedy Search Beam Search Top 10 Sampling Beam + Noise Argmax Noised Middle ୯ޠ ֬ (ιʔτࡁ)
߹σʔλͷ࡞ΓํʹΑΔҧ͍ΛධՁ Top 10 ηʔλʔ פ͍ פ͍ ࠓ ͷ ෩अ פ͍
ࡢ Beam + Noise Sampling ྫྷଂݿ ϥϯμϜαϯϓϦϯά 1Ґ͔Β10ҐݶఆͰϥϯμϜαϯϓϦϯά ࠓ פ͍ ࠓ פ͍ ࠓ פ͍ ࠓ פ͍ BLANK ม͕͑ͯࠩͳ͍ p=0.1 p=0.1 uniform+maxҠಈ3 k=5, 10, 20, 50Ͱࢼ͕ͨ͠ɺ Otto et al. 2018a ʹΑΔͱෆ֬ఆੑ͕ ͔ͳΓେ͖͘มͳ ୯ޠΛग़͢Մೳੑ͕େ͖͍ ॳग़Imamura et al. 2018 (NICT) ڭࢣͳֶ͠शख๏ͰఏҊ Lample et al. 2018a ෩अ ෩अ ୯ޠ ֬ (ιʔτࡁ) ੜจʹଟ༷ੑΛ࣋ͨͤΔ͜ͱ͕Ͱ͖Δ จষੜٕ๏ͱͯ͠ݹ͘ɺ Graves et al. 2003ͳͲͰΘΕ͍ͯΔ
߹σʔλͷ࡞ΓํʹΑΔҧ͍ΛධՁ samplingbeam+noiseɺbeamgreedyΑΓ1.7-2.0 BLEUੑೳ͕ྑ͍ top10beamgreedyΑΓྑ͍͕samplingbeam+noiseΑΓѱ͍ samplingbeam+noise.ͷ࣌ʹbeamͷഒۙ͘ੑೳվળ͍ͯ͠Δ
ੜ͞Εͨจষͷੳ Greedy searchBeam searchଟ༷ͰϦονͳσʔλΛΊΔ Ott et al.2018aͷ จʹΑΔͱසޠ͕ग़ͳ͘ͳΔʹ͋Δ ͷͰSamplingख๏͕Α͍ denoising
autoencodersͱͷྨࣅੑ samplingbeam+noiseͰग़དྷ্͕ͬͨจݱ࣮Ε͍ͯ͠Δ͕ɺzஔzzॱংมߋzͱ ͍͏ݱී௨ʹى͖ΔͷͰͦ͏͍ͬͨॲཧΛೖΕΔͱϩόετʹͳΔ ࣍ͷ୯ޠ͕༧ଌͰ͖ͳ͍ͨΊɺқ͕Ҿ্͖͕ͬͯਫ਼্͕͕Δ
ੜ͞Εͨจষͷੳ ໌Β͔ʹ͓͔͍͠୯ޠ͕ೖΔͷzہॴతzͩͱΘ͔Δ ԾઆͲΜͳϊΠζ୯ޠ͕དྷͯͳ͍Α͏ɺͬͨਖ਼ৗ෦ͷ൚Խੑೳ্͕ͨ͠ʁ 0, /( ڐ༰Ͱ͖Δ୯ޠΛ੨ɺ໌Β͔ʹ͓͔͍͠୯ޠΛͰృͬͯΈΔͱɺ ʮہॴతͳϊΠζʯʹΑΔ൚Խੑೳ্ ࣭ʹؔΘΒͣଟ༷ੑ͕૿͔͑ͨΒ0,ͱ͍͏ղऍͰ͖ͳ͘ͳ͍͕ɺ ͦΕʹͯ͠ਫ਼্͕Γ͗͢Ͱʁͱ͍͏͜ͱͰ͏গ͠۷ΓԼ͍͛ͨ (ݸਓతߟ)
(ݸਓతߟͷଓ͖) ݘ͕͖Ͱ͢ ΫτΡϧϑਆ͕͖Ͱ͢ I like dog I am scared of
Cthulhu ہॴతϊΠζΛ༩ ଟ͘ͷࣗવݴޠॲཧͷϞσϧ গ͠ม͑Δ͚ͩͰ؆୯ʹὃͤΔಛੑ͕͋Δ Deep Text Classification Can be Fooled Liang et al. 2016 ༁ ະֶशͷσʔλ ޡࠩٯ ͜ͷʹରԠ͢Δଧͪख ʹͳ͍ͬͯΔՄೳੑ ԾʹΫτΡϧϑ͕ປࢺͰ ʮ͖ʯʮlikeʯ (ϊΠζ෦ʹޡࠩΛ͢ΔͷᘳʹແବͳͷͰվળͰ͖Δ͔)
Low Resource & High Resource #5ͷݩखͱͳΔର༁Ϧιʔεྔͷҧ͍ʹ͍ͭͯ
5BSHFU 4PVSDF ຊ໋Ϟσϧ 5BSHFU ୯ݴޠσʔλ 4PVSDF ߹ 4ZOUIFUJD ୯ݴޠσʔλ
ֶश ݩख͕গͳ͍ͱԿ͕ى͜Δ͔ ͜͜ͷྔ͕গͳ͍(80Kจఔ) จݿຊ͘Β͍ (112ສࣈ, 80ࣈ/จ)
ݩख͕গͳ͍ͱԿ͕ى͜Δ͔ 80KจͰsamplingbeam searchͷٯసݱ͕ى͖͍ͯΔ σʔλ͕ଟ͚Εଟ͍΄Ͳsampling͕ڧ͘ͳΔ ݩख͕গͳ͍߹ɺBTͷਫ਼͕ߴ͘ͳ͍ͷͰɺsamplingͰϊΠζΛՃ͑ͨͱ͖ͷѱӨ ڹʹ੬͘ͳΔ BTͷਫ਼ͷҾ্͖͕͛ඞཁ
ݩख͕গͳ͍ͷܰݮ 5BSHFU 4PVSDF &ODPEFS %FDPEFS 4PVSDF 4PVSDF 5BSHFU 5BSHFU 4PVSDFݴޠϞσϧ
5BSHFUݴޠϞσϧ సҠֶशorॏΈڞ༗ సҠֶशorॏΈڞ༗ (1) ୯ݴޠͰݴޠϞσϧΛ࡞ͬͯసҠֶश ʮݴޠϞσϧͷసҠ͕ࠔʯͱ͍͏͕Devlin et al. 2018 (BERT)Ͱղফ͞ΕͨͷͰਐల͋Δ͔
͍ͭͷؒʹ͔ͷ͍͢͝จ͕ൃද͞Ε͍ͯͨ ࢀߟจ: Lample et al. 2019 (XLM) #&35ΛసҠֶशɺ༁Λ&ODPEFS%FDPEFSͷܗͰͳ͘ҰͭͷݴޠϞσϧ ͱֶͯ͠श͠ɺ8.5`ಠӳ༁ͷڭࢣͳֶ͠शͷ405"Λ#-&6ߋ৽ BSYJWTVCNJU
ݩख͕গͳ͍ͷܰݮ (2) ରֶश (Dual Learning) ຊ໋Ϟσϧ 5BSHFU ୯ݴޠσʔλ 4PVSDF ୯ݴޠσʔλ
lରzϞσϧ ର༁Ͱͳͯ͘OK
Domain of synthetic data ߹σʔλͷυϝΠϯʹؔ͢Δݕূ
υϝΠϯదԠ 5BSHFU จষσʔλ 4PVSDF จষσʔλ ຊ໋Ϟσϧ χϡʔε 5BSHFU ୯ݴޠσʔλ χϡʔε
4PVSDF ߹ 4ZOUIFUJD ୯ݴޠσʔλ ֶश χϡʔεͷର༁σʔλ͕ͳͯ͘χϡʔεʹڧ͘ͳΔ͔ʁ
υϝΠϯదԠ ධՁ༻σʔλͷυϝΠϯʹBTͷυϝΠϯ news ͷ߹ຊͷσʔλ ఆͰ83%ͷվળ ධՁ༻σʔλͷυϝΠϯͱ#5ͷυϝΠϯ news ͕·ΔͰ߹͍ͬͯͳ͍ ߹ʹຊͷσʔλఆͰ32.5%ͷվળ ͲͪΒվળ͍ͯ͠Δ͕ɺυϝΠϯ߹க͍ͯ͠Δ߹൚༻ͷσʔλҎ
্ͷਫ਼ʹͳΔ ʓʓδϟϯϧͷର༁σʔλ͕ͳͯ͘ ୯ݴޠσʔλ͕͋Εʓʓδϟϯϧͷ༁ΛڧԽՄೳ
·ͱΊ ·ͱΊ Ͳͷख๏Ͱٯ༁ΛೖΕΕਫ਼্͕Δ͕ɺٯ ༁͢Δͱ͖ͷѻ͍Ͱਫ਼্෯͕ഒʹͳΔ͜ͱ ͋Δ σʔλ͕গͳ͍࣌ʹ૬ରతʹੑೳ͕Լ͕ΔͷͰ҆ қʹαϯϓϦϯά͕͑ͳ͍ υϝΠϯదԠʹ͑Δ