Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介]User-Level Sentiment AnalysisIncorporati...
Search
ysekky
February 18, 2015
Research
0
330
[論文紹介]User-Level Sentiment Analysis Incorporating Social Network (KDD2011)
ysekky
February 18, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
1.9k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.5k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
1.9k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
730
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.6k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.4k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
980
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.2k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.8k
Other Decks in Research
See All in Research
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
3
730
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
110
Weekly AI Agents News!
masatoto
25
24k
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
110
KDD論文読み会2024: False Positive in A/B Tests
ryotoitoi
0
200
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
140
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
120
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
130
湯村研究室の紹介2024 / yumulab2024
yumulab
0
280
[CV勉強会@関東 CVPR2024] Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation / kantocv 61th CVPR 2024
shunk031
1
450
Physics of Language Models: Part 3.1, Knowledge Storage and Extraction
sosk
1
950
snlp2024_multiheadMoE
takase
0
430
Featured
See All Featured
Music & Morning Musume
bryan
46
6.2k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Thoughts on Productivity
jonyablonski
67
4.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
Being A Developer After 40
akosma
86
590k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
506
140k
A Philosophy of Restraint
colly
203
16k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
GitHub's CSS Performance
jonrohan
1030
460k
A better future with KSS
kneath
238
17k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Six Lessons from altMBA
skipperchong
27
3.5k
Transcript
[論文紹介] User-‐Level Sen.ment Analysis Incorpora.ng Social Network
Chenhao Tan*1, Killian Lee*1, Jie Tang*2, Long Jiang*3, Ming Zhou*3, Ping Li*1 (Cornel University*1, Tsinghua University*2, MicrosoL Research Asia*3) KDD2011 Yoshifumi Seki (Gunosy Inc) 2015.02.17 @Gunosy研究会 #83
概要 • TwiZerを使ってユーザの感情分析をする – 半教師ありモデル • ネットワーク上のつながりのあるユーザの感 情は似るという仮説を調べる
– フォロー/フォロワー – メンション – 相互か否か?
Contribu.on • SNSで関係のあるユーザ同士が同じ意見を持 つことが多いことを • ネットワーク指標を加える事でテキストからだ けの予測よりも感情分析が改善することを示 した
• フォロー/フォロワーとメンションのネットワー クの比較や、パラメータ学習方法の比較も やった
Concrete Problem Se]ng • ユーザが該当するトピックに対してポジティブ かネガティブかを判定する • ユーザ同士がつながっているかを判定する
– フォローしているか – 相互フォローか – リプライしたか – 相互にリプライを送ったか
Data Collec.on • プロフィールに記載されている情報からトピッ クに対するポジネガを判定する – obama lover, an.-‐obamaとかプロフィールに書い てある
ある2人のユーザが同じ感情を持つ確率
意見の違いとユーザがConnectedである確率
Model Framework • クエリqに対するツイートとユーザのネットワー クを生成する • Eqはuser-‐tweetとuser-‐userのエッジの2種 – ユーザ間のエッジはmen.onとfollowの相互が一
方向かの4種
Proposed Model • Y: 感情ラベルベクトル – ユーザ数次元 • k,
l : 感情ラベル {0, 1} • μ, λ: それぞれをどの程度反映させるかの重 み付きパラメータ • f, h: feature func.on
User-‐tweet factor • 学習済の場合とそうでない場合で値を分ける • k: ユーザのラベル •
l: ツイートのラベル
User-‐User factor • k : ユーザiのラベル • l: ユーザjのラベル
• w_rela.on: 関係性に対する重み
重みの設定 • w_labeled = 1.0 • w_unlabeled = 0.125
• w_rela.on = 0/6 • labeleを1.0に固定し, w_unlabeledを[0.1-‐0.5], w_rela.on{0.5-‐0.8}で変化させて設定した
Parameter Es.ma.on and Predic.on • λ, μを推定する • No
Learning – 直接推定する • Learning – No Learningで得た初期値を元に学習する
Direct Es.ma.on from simple sta.s.cs • 学習はしない • つながっているユーザ間で一致している確率
を数えるだけ • ネガティブユーザはネガティブなポジティブ ユーザはポジティブなツイートしかしない
Simple Rank
• LLR(Ynew, Y) – Ynewの対数尤度-‐Yの対数尤度 • RealPref(Ynew, Y)
– Pref(Ynew) – Pref(Y) • Pref(Y) = Accuracy + MacroF1 • もっと良い学習方法はあるけど,本論文はモ デルの良さをいいたいだけだからあんまりそ こは問題にならない
Predic.on • Zの推定が難しい • 5回SimpleRankで推定してどっちのラベル だったかをvoteさせて決める
Experiment Produces • 10回実験する – 教師データとして50個ずつP/Nのユーザを選ぶ • ツイートのポジネガ分類
– トピックごとにラベル付きデータから分類器をつくる • Baseline(SVM) – SVMを使ってユーザのツイートで多い方の感情ラベルを 採用 • Heterogeneous Graph Model with Direct es.ma.on from simple sta.cs – 推定を学習しないでやったグラフモデル • Heterogeneous Graph Model with Simple Rank – Simple Rankで学習したグラフモデル
Case Study • Obamaに関するポジネ ガ • 緑:P, 赤N
• ラベル付きデータのグ ラフ • ベースラインと提案手 法を比較する
None
None
Performance Analysis 左がNoLearning, 右がLearning △は3トピック以上でベースラインを統計的に有意に上回る
Performance Analysis • 提案手法はベースラインよりよい • Followのほうがmen.onよりよい • directのほうがmutualよりよい
• LearningとNoLearningはそんなに変わらない
Per-‐topic performance: density vs. quality analysis
Adding more unlabeled data Learningがもっともよい結果