Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介]User-Level Sentiment AnalysisIncorporati...
Search
ysekky
February 18, 2015
Research
0
360
[論文紹介]User-Level Sentiment Analysis Incorporating Social Network (KDD2011)
ysekky
February 18, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
770
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
230
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
160
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
120
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
170
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
150
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
100
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
570
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
2.8k
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1.7k
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
180
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
250
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Thoughts on Productivity
jonyablonski
70
4.8k
Optimizing for Happiness
mojombo
379
70k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
YesSQL, Process and Tooling at Scale
rocio
173
14k
How STYLIGHT went responsive
nonsquared
100
5.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
Statistics for Hackers
jakevdp
799
220k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Code Review Best Practice
trishagee
70
19k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Transcript
[論文紹介] User-‐Level Sen.ment Analysis Incorpora.ng Social Network
Chenhao Tan*1, Killian Lee*1, Jie Tang*2, Long Jiang*3, Ming Zhou*3, Ping Li*1 (Cornel University*1, Tsinghua University*2, MicrosoL Research Asia*3) KDD2011 Yoshifumi Seki (Gunosy Inc) 2015.02.17 @Gunosy研究会 #83
概要 • TwiZerを使ってユーザの感情分析をする – 半教師ありモデル • ネットワーク上のつながりのあるユーザの感 情は似るという仮説を調べる
– フォロー/フォロワー – メンション – 相互か否か?
Contribu.on • SNSで関係のあるユーザ同士が同じ意見を持 つことが多いことを • ネットワーク指標を加える事でテキストからだ けの予測よりも感情分析が改善することを示 した
• フォロー/フォロワーとメンションのネットワー クの比較や、パラメータ学習方法の比較も やった
Concrete Problem Se]ng • ユーザが該当するトピックに対してポジティブ かネガティブかを判定する • ユーザ同士がつながっているかを判定する
– フォローしているか – 相互フォローか – リプライしたか – 相互にリプライを送ったか
Data Collec.on • プロフィールに記載されている情報からトピッ クに対するポジネガを判定する – obama lover, an.-‐obamaとかプロフィールに書い てある
ある2人のユーザが同じ感情を持つ確率
意見の違いとユーザがConnectedである確率
Model Framework • クエリqに対するツイートとユーザのネットワー クを生成する • Eqはuser-‐tweetとuser-‐userのエッジの2種 – ユーザ間のエッジはmen.onとfollowの相互が一
方向かの4種
Proposed Model • Y: 感情ラベルベクトル – ユーザ数次元 • k,
l : 感情ラベル {0, 1} • μ, λ: それぞれをどの程度反映させるかの重 み付きパラメータ • f, h: feature func.on
User-‐tweet factor • 学習済の場合とそうでない場合で値を分ける • k: ユーザのラベル •
l: ツイートのラベル
User-‐User factor • k : ユーザiのラベル • l: ユーザjのラベル
• w_rela.on: 関係性に対する重み
重みの設定 • w_labeled = 1.0 • w_unlabeled = 0.125
• w_rela.on = 0/6 • labeleを1.0に固定し, w_unlabeledを[0.1-‐0.5], w_rela.on{0.5-‐0.8}で変化させて設定した
Parameter Es.ma.on and Predic.on • λ, μを推定する • No
Learning – 直接推定する • Learning – No Learningで得た初期値を元に学習する
Direct Es.ma.on from simple sta.s.cs • 学習はしない • つながっているユーザ間で一致している確率
を数えるだけ • ネガティブユーザはネガティブなポジティブ ユーザはポジティブなツイートしかしない
Simple Rank
• LLR(Ynew, Y) – Ynewの対数尤度-‐Yの対数尤度 • RealPref(Ynew, Y)
– Pref(Ynew) – Pref(Y) • Pref(Y) = Accuracy + MacroF1 • もっと良い学習方法はあるけど,本論文はモ デルの良さをいいたいだけだからあんまりそ こは問題にならない
Predic.on • Zの推定が難しい • 5回SimpleRankで推定してどっちのラベル だったかをvoteさせて決める
Experiment Produces • 10回実験する – 教師データとして50個ずつP/Nのユーザを選ぶ • ツイートのポジネガ分類
– トピックごとにラベル付きデータから分類器をつくる • Baseline(SVM) – SVMを使ってユーザのツイートで多い方の感情ラベルを 採用 • Heterogeneous Graph Model with Direct es.ma.on from simple sta.cs – 推定を学習しないでやったグラフモデル • Heterogeneous Graph Model with Simple Rank – Simple Rankで学習したグラフモデル
Case Study • Obamaに関するポジネ ガ • 緑:P, 赤N
• ラベル付きデータのグ ラフ • ベースラインと提案手 法を比較する
None
None
Performance Analysis 左がNoLearning, 右がLearning △は3トピック以上でベースラインを統計的に有意に上回る
Performance Analysis • 提案手法はベースラインよりよい • Followのほうがmen.onよりよい • directのほうがmutualよりよい
• LearningとNoLearningはそんなに変わらない
Per-‐topic performance: density vs. quality analysis
Adding more unlabeled data Learningがもっともよい結果