Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介][WSDM2015]Modeling Website Popularity Com...
Search
ysekky
May 19, 2015
Research
1
900
[論文紹介][WSDM2015]Modeling Website Popularity Competition in the Attention-Activity Marketplace
ysekky
May 19, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.3k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.8k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
800
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.9k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.4k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.6k
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
110
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
110
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
POI: Proof of Identity
katsyoshi
0
120
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
460
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
440
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
330
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
Language Models Are Implicitly Continuous
eumesy
PRO
0
360
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
46
7.8k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
170
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
190
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Facilitating Awesome Meetings
lara
57
6.7k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
0
170
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Code Review Best Practice
trishagee
74
19k
Music & Morning Musume
bryan
46
7k
Transcript
[論文紹介] Modeling Website Popularity Compe88on
in the A;en8on-‐Ac8vity Marketplace Bruno Ribeiro and Christos Faloutsos (Carnegie Mellon University) WSDM 2015 Yoshifumi Seki (Gunosy Inc) 2015.05.13 @WSDM 2015読み会
概要 • 競合するWebサービスのDAUの予測をしたい • 「Marketplace of A;en8on」(Herbert A. Simon)
– 情報はA;en8onを取り合っている • 「A;en8on-‐Ac8vity Marketplace」 – ウェブサイトはA;en8onと行動を取り合っている – 特にSNSのようなサービスはAc8vityがコンテンツ になり,それがA;en8onを呼ぶ
やっていること • A;en8on-‐Ac8vity Marketplaceの考え方を用 いて,FacebookがMySpaceなどのサービスに 打ち勝った経過をモデル化する
None
None
用いたデータ • Amazon AlexaのDAUデータ(2007-‐2014) – Ac8ve Internet Popula8on(AIP)
– DAU/AIPを用いる • 曜日要因などを正規化できる – 31日移動平均によって平滑化 – スマートフォンは入っていない • MySpaceとFacebookの争っていた時期はSmartPhoneの割 合は少ないのでOK • MySpaceのAc8vityデータ – 2004-‐2009 [Ribeiro et al]
model • ユーザの状態を以下のタプルで表現する – (W_a, W_b) – ウェブサイトaの状態とウェブサイトbの状態
– 状態は以下 • U – 気づいていないが気づけばアクティブユーザになりそうな人 • A – アクティブユーザ • I – アクティブユーザでなくなったユーザ • 0 – そのウェブサイトに未来永劫アクティブにならないユーザ
DAUの表現
Disjoint Popula8on Dynamics
Joint Unaware Popula8on Dynamics
Concurrent Adopters Dynamics
A;en8on Sharing of Concurrent Adopters B_b: サイトbの滞在時間, delta_b:
サイトbの滞在時間が次のステップでいくつ減る か?
DAU Model fit Levenberg-‐Marquardt algorithmを用いてフィッティング Locallyな最適値を探すので多くの初期値でフィッティングさせて最適なものを探し た 24
monthでtrainingし, 4monthでモデルを選択した
Facebook vs MySpace
Mul8ply
Hi5
まとめ • ac8vity-‐a;en8on marketplaceという概念を提 案し,それを元にDAU予測モデルを構築した • 結果としてFacebookとその他のSNSとの競争 の状況を再現することができた
感想 • ひとつの事例であって、ここまで一般化できるの だろうか… • また実験が雑で例えば競合を想定しなかった時 との精度はどうなるか?などがわからず手法の 優位性を検討するのが難しい
– 著者らは競合を想定しないモデルも以前提案してお り、多少は優位になっているとは考えられるが… • 負けがどれだけまで負けるかみたいなモデルに はできる。投資家とかVC向け?