Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介][WSDM2015]Modeling Website Popularity Com...
Search
ysekky
May 19, 2015
Research
1
890
[論文紹介][WSDM2015]Modeling Website Popularity Competition in the Attention-Activity Marketplace
ysekky
May 19, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
780
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
20250725-bet-ai-day
cipepser
2
420
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
260
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
1k
能動適応的実験計画
masakat0
2
810
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
270
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
0
340
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
16
9.9k
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
310
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
130
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
520
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.9k
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
5
1.5k
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
Navigating Team Friction
lara
189
15k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
A Modern Web Designer's Workflow
chriscoyier
696
190k
The World Runs on Bad Software
bkeepers
PRO
70
11k
The Pragmatic Product Professional
lauravandoore
36
6.9k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Site-Speed That Sticks
csswizardry
10
820
Music & Morning Musume
bryan
46
6.8k
Transcript
[論文紹介] Modeling Website Popularity Compe88on
in the A;en8on-‐Ac8vity Marketplace Bruno Ribeiro and Christos Faloutsos (Carnegie Mellon University) WSDM 2015 Yoshifumi Seki (Gunosy Inc) 2015.05.13 @WSDM 2015読み会
概要 • 競合するWebサービスのDAUの予測をしたい • 「Marketplace of A;en8on」(Herbert A. Simon)
– 情報はA;en8onを取り合っている • 「A;en8on-‐Ac8vity Marketplace」 – ウェブサイトはA;en8onと行動を取り合っている – 特にSNSのようなサービスはAc8vityがコンテンツ になり,それがA;en8onを呼ぶ
やっていること • A;en8on-‐Ac8vity Marketplaceの考え方を用 いて,FacebookがMySpaceなどのサービスに 打ち勝った経過をモデル化する
None
None
用いたデータ • Amazon AlexaのDAUデータ(2007-‐2014) – Ac8ve Internet Popula8on(AIP)
– DAU/AIPを用いる • 曜日要因などを正規化できる – 31日移動平均によって平滑化 – スマートフォンは入っていない • MySpaceとFacebookの争っていた時期はSmartPhoneの割 合は少ないのでOK • MySpaceのAc8vityデータ – 2004-‐2009 [Ribeiro et al]
model • ユーザの状態を以下のタプルで表現する – (W_a, W_b) – ウェブサイトaの状態とウェブサイトbの状態
– 状態は以下 • U – 気づいていないが気づけばアクティブユーザになりそうな人 • A – アクティブユーザ • I – アクティブユーザでなくなったユーザ • 0 – そのウェブサイトに未来永劫アクティブにならないユーザ
DAUの表現
Disjoint Popula8on Dynamics
Joint Unaware Popula8on Dynamics
Concurrent Adopters Dynamics
A;en8on Sharing of Concurrent Adopters B_b: サイトbの滞在時間, delta_b:
サイトbの滞在時間が次のステップでいくつ減る か?
DAU Model fit Levenberg-‐Marquardt algorithmを用いてフィッティング Locallyな最適値を探すので多くの初期値でフィッティングさせて最適なものを探し た 24
monthでtrainingし, 4monthでモデルを選択した
Facebook vs MySpace
Mul8ply
Hi5
まとめ • ac8vity-‐a;en8on marketplaceという概念を提 案し,それを元にDAU予測モデルを構築した • 結果としてFacebookとその他のSNSとの競争 の状況を再現することができた
感想 • ひとつの事例であって、ここまで一般化できるの だろうか… • また実験が雑で例えば競合を想定しなかった時 との精度はどうなるか?などがわからず手法の 優位性を検討するのが難しい
– 著者らは競合を想定しないモデルも以前提案してお り、多少は優位になっているとは考えられるが… • 負けがどれだけまで負けるかみたいなモデルに はできる。投資家とかVC向け?