Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
輪読 / topic model3.1, 3.2
Search
ysekky
December 22, 2015
Research
0
330
輪読 / topic model3.1, 3.2
ysekky
December 22, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.1k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
760
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Research
See All in Research
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
220
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
460
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
210
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
960
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
5
2.5k
Combinatorial Search with Generators
kei18
0
280
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
5.6k
90 分で学ぶ P 対 NP 問題
e869120
17
7.4k
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
140
20250502_ABEJA_論文読み会_スライド
flatton
0
170
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
520
ことばの意味を計算するしくみ
verypluming
11
2.6k
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Code Reviewing Like a Champion
maltzj
524
40k
4 Signs Your Business is Dying
shpigford
184
22k
Documentation Writing (for coders)
carmenintech
71
4.9k
Designing for humans not robots
tammielis
253
25k
Gamification - CAS2011
davidbonilla
81
5.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Faster Mobile Websites
deanohume
307
31k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
920
It's Worth the Effort
3n
184
28k
A designer walks into a library…
pauljervisheath
206
24k
How to train your dragon (web standard)
notwaldorf
92
6.1k
Transcript
τϐοΫϞσϧʹΑΔ౷ܭతજࡏҙຯ ղੳ 3ষ ֶशΞϧΰϦζϜ(3.1 ~ 3.2.2) Yoshifumi Seki GunosyσʔλϚΠχϯάݚڀձ #97
2015.12.21
3.1 ౷ܭతֶशΞϧΰϦζϜ ౷ܭతֶश: ؍ଌσʔλͷഎޙʹજΉϧʔϧɾنଇΛ౷ܭతʹهड़ ͠ɼσʔλ͔Βࣗಈతʹ֫ಘ͢ΔֶशͷΈ ؍ଌσʔλ ؍ଌσʔλΛੜͨ֬͠ ੜϞσϧ ɹʹͰ͖Δ͚͍ͩۙ֬ ɹΛਪఆ͢Δ
KL-divergence ౷ܭϞσϧͷۙ͞Λද͢ࢦඪ ͜ΕʹΑΓɼ ʹ͍ۙ֬Λਪఆ͢Δͱ͍͏KLΛ ࠷খԽ͢Δͱ͍͏ʹͳΔ
KL-divegenceͷ࠷খԽ ͷظΛ ͱ͢ΔͱҎԼͷΑ͏ʹల։Ͱ͖Δ ͷ߲ແࢹͰ͖ΔͷͰ࠷খԽҎԼͷΑ͏ʹͳΔ
ظܭࢉͷۙࣅ ະͳͷͰ؍ଌσʔλΛਅͷ͔ΒಘΒΕͨαϯϓϧͱͯۙ͠ࣅΛߦ͏ɽ ͜ͷํ๏࠷ਪఆ(Maximum Likelihood estimation)ͱݺΕ, ࠷ਪఆʹΑͬͯΒΕΔղΛ ͱ͢Δ
ੜϞσϧͱͯ͠ߟ͑Δ σʔλ ͷੜ֬ ࠷ਪఆ͜ͷੜ֬ͷରΛ࠷େʹ͢Δ ΛٻΊΔ͜ͱͰ ͋Δͱ͍͑Δɽ
MAPਪఆ ͱ͢Δͱੜ֬ ͱͳΓ࠷దԽҎԼ ͷΑ͏ʹ͔͚Δ աֶशΛ͙ͨΊͷਖ਼ଇԽ߲ͱͯ͠ػೳ͍ͯ͠ΔͨΊ, ࠷ਪ ఆΑΓ൚Խੑೳ͕ߴֶ͍श͕ظͰ͖Δɽ ͜ΕΛࣄޙ֬࠷େ(Maxmux a Posteriori,
MAP)ਪఆͱݺͿɽ
ࣄޙ֬ ࣄޙ֬ϕΠζͷఆཧʹΑͬͯҎԼͷΑ͏ʹٻΊΒΕΔɽ MAPਪఆ͜ͷࣄޙ͕֬࠷େͱͳΔ ΛٻΊΔͱͳΔ
ϕΠζਪఆ ࠷ਪఆMAPਪఆύϥϝʔλͷΛਪఆ͢ΔͨΊਪఆͱݺΕΔ ਪఆ͞ΕͨύϥϝʔλʹΑͬͯ৽ͨͳσʔλ ͷ༧ଌ ΛٻΊΔ͜ͱ ͕Ͱ͖Δ ͦΕʹ͍ͨͯ͠ύϥϝʔλͷࣄޙ͔֬ΒॏΈ͚͞Εͨ༧ଌΛٻΊΔํ ๏ΛϕΠζਪఆͱݺͿ ͭ·Γύϥϝʔλࣗମ֬ͱͯ͠දݱ͢Δɽ ͜ͷΑ͏ͳੵܭࢉղੳతʹٻΊΔ͜ͱ͕େͰ͖ͳ͍ͨΊɼ͜ͷۙࣅղΛͲΑ
͏ʹٻΊΔ͔ͱ͍͏ΞϧΰϦζϜ͕ଘࡏ͢Δ
LDAʹ͓͚ΔఆࣜԽ • ؍ଌσʔλ: • ֤σʔλͷજࡏม: • જࡏมͷऔΓ͏Δ: • જࡏมͷऔΓ͏Δͷ֬ม: •
֤જࡏม֬ϕΫτϧ ʹجͮ͘ଟ߲ʹै͏ • \piσΟϦΫΤʹΑͬͯੜ͞ΕΔ
LDAʹ͓͚ΔఆࣜԽ • ͱ ϋΠύʔύϥϝʔλ • ͱɹ ಉ͡
LDAʹ͓͚ΔϕΠζਪఆ ҎԼͷ༧ଌΛٻΊΔͷ͕తͰ͋Δ
3.2 αϯϓϦϯάۙࣅ๏ • αϯϓϦϯάۙࣅ๏ ࣄޙ͔ΒαϯϓϦϯά͞Εͨෳͷύϥϝʔλͷฏۉʹਲ ͬͯ༧ଌΛߦ͏ • ΪϒεαϯϓϦϯά • पลԽΪϒεαϯϓϦϯά
αϯϓϦϯά͔Βͷۙࣅܭࢉ ͱͯ͠ࣄޙ͔ΒͷαϯϓϧΛSݸੜ͢Δͱɼ ͱͯۙ͠ࣅܭࢉΛߦ͏͜ͱ͕Ͱ͖Δɽ ࣄޙ͔Βͷαϯϓϧੜ͕Ͱ͖Εۙࣅܭࢉ͕ՄೳͰ͋Δ͕, αϯϓ ϧੜଟ͘ͷ߹ίετ͕ߴ͍ɽ ͜ͷΑ͏ͳ߹ʹଟ͘༻͍ΒΕΔͷ͕ΪϒεαϯϓϦϯάͰ͋Δ
ΪϒεαϯϓϦϯά ΪϒεαϯϓϦϯάͰతͷࣄޙ͔ΒͷαϯϓϧੜΛߦ͏ΘΓ ʹɼαϯϓϧͷܭࢉίετ͕͍͖݅֬Λߏ͠ɼ֬มΛ ަޓʹαϯϓϧੜ͢Δ͜ͱͰɼతͷࣄޙ͔ΒͷαϯϓϧΛੜ͢Δ LDAͰજࡏม ΛαϯϓϦϯάରͱ͢Δ͜ͱͰܭࢉίετͷ͍ ͖݅Λߏ͍ͯ͠Δɽ • ΪϒεαϯϓϦϯάͷྲྀΕ [ࣄޙ]
=> [݁߹] => [ϕΠζͷఆཧʹΑΓల։] => [ఆҼࢠΛ আ֎]
z_iͷαϯϓϦϯά ͔Β ΛऔΓআ͍ͨજࡏมू߹Λ ͱදه͢Δ Ҏ֎ͷͯ͢ͷ֬มΛطͱݻఆ͖ͯ݅֬͠ΛٻΊ Δ
• ʹؔͳ͍߲আڈͯ͠ߟ͑Δ • ݁߹֬ΛϕΠζͷఆཧͰల։͢Δ
(3.18)͔Β(3.19)ʹ͍ͭͯ • ʹ͍ͭͯల։ • ʹରͯ͠د༩͠ͳ͍ͷΛཧ -ɹ ʹ͍ͭͯల։
• ʹد༩͠ͳ͍ͷΛཧ • ʹ͍ͭͯల։
• د༩͠ͳ͍ͷΛཧ • ల։ͯ͠ ʹؔΘΔͷ, ʹؔΘΔͷ͚ͩʹ͢Δ • z_i=kʹؔΘΔͷ͚ͩʹ͢Δ
ਖ਼نԽ߲Λܭࢉ͢Δ • ࢠ͕ܭࢉͰ͖ͨͷͰɼͦΕʹ߹ΘͤͯΛઃఆ͍ͯ͠ Δɻ • z_iͷऔΓ͏ΔΛͯ͢ͱͬͯ૯Λͱ͍ͬͯΔͷͰଟཧ తʹ1ʹͳΔ
ͷ͖݅
3.2.2 पลԽΪϒεαϯϓϦϯά • Λੵফڈ͢Δ͜ͱͰ ΛαϯϓϦϯά͢Δ • ֬มͷੵআڈपลԽͱݺΕΔ͜ͱ͔ΒɼपลԽΪ ϒεαϯϓϦϯάͱݺͿ
ࣄޙͷల։
पลԽͷੵ
ੵܭࢉΛղੳతʹٻΊΔ पลԽΪϒεαϯϓϦϯάΛߦ͏ͨΊʹղੳతʹੵܭࢉ͕Ͱ͖ͳ ͚ΕͳΒͳ͍ ੵࣜࣄޙ֬ʹΑΔظܭࢉͱΈͳ͢͜ͱ͕Ͱ͖ɼ ܭࢉରͷ֬ͷڞࣄલΛ༻͍ͯࣄલΛߏ͢Δ͜ͱ ͰੵܭࢉΛղੳతʹٻΊΔ͜ͱ͕Ͱ͖Δɽ LDAͷ߹σΟϦΫϨͳͷͰ,ҎԼͷఆཧʹै͏
࠷ॳͷ͜Ζͷσʔλഁغ͢Δඞཁ͕͋Δ αϯϓϦϯάͰॳظͷࠒͷσʔλॳظʹґଘ͢ΔͷͰഁغ ͢Δඞཁ͕͋Δɽ ͜ͷظؒͷ͜ͱΛburn-in periodͱݺͿ