but ng network is depicted in ined using the DistBe- ing system using mod- rallelism. Although we n only, a rough estimate work could be trained to GPUs within a week, the usage. Our training used escent with 0.9 momen- ule (decreasing the learn- lyak averaging [13] was at inference time. e changed substantially ompetition, and already with other options, some- d hyperparameters, such Therefore, it is hard to most effective single way ate matters further, some on smaller relative crops, [8]. Still, one prescrip- y well after the competi- sized patches of the im- y between 8% and 100% constrained to the inter- photometric distortions to combat overfitting to data. fication Challenge n challenge involves the ne of 1000 leaf-node cat- There are about 1.2 mil- r validation and 100,000 is associated with one mance is measured based predictions. Two num- -1 accuracy rate, which the first predicted class, mpares the ground truth es: an image is deemed input Conv 7x7+2(S) MaxPool 3x3+2(S) LocalRespNorm Conv 1x1+1(V) Conv 3x3+1(S) LocalRespNorm MaxPool 3x3+2(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) MaxPool 3x3+1(S) DepthConcat Conv 3x3+1(S) Conv 5x5+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) MaxPool 3x3+1(S) DepthConcat Conv 3x3+1(S) Conv 5x5+1(S) Conv 1x1+1(S) MaxPool 3x3+2(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) MaxPool 3x3+1(S) DepthConcat Conv 3x3+1(S) Conv 5x5+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) MaxPool 3x3+1(S) AveragePool 5x5+3(V) DepthConcat Conv 3x3+1(S) Conv 5x5+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) MaxPool 3x3+1(S) DepthConcat Conv 3x3+1(S) Conv 5x5+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) MaxPool 3x3+1(S) DepthConcat Conv 3x3+1(S) Conv 5x5+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) MaxPool 3x3+1(S) AveragePool 5x5+3(V) DepthConcat Conv 3x3+1(S) Conv 5x5+1(S) Conv 1x1+1(S) MaxPool 3x3+2(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) MaxPool 3x3+1(S) DepthConcat Conv 3x3+1(S) Conv 5x5+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) Conv 1x1+1(S) MaxPool 3x3+1(S) DepthConcat Conv 3x3+1(S) Conv 5x5+1(S) Conv 1x1+1(S) AveragePool 7x7+1(V) FC Conv 1x1+1(S) FC FC SoftmaxActivation softmax0 Conv 1x1+1(S) FC FC SoftmaxActivation softmax1 SoftmaxActivation softmax2 Figure 3: GoogLeNet network with all the bells and whistles. ⼤規模画像認識コンペティション ILSVRCで2014年に優勝 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.