Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AGI福岡 第3回
Search
yuky_az
November 14, 2024
Technology
0
68
AGI福岡 第3回
AGI時代に向けて、今からできることを共に考え、実行していこう!
yuky_az
November 14, 2024
Tweet
Share
More Decks by yuky_az
See All by yuky_az
AGI福岡 第2回
yukinaga
0
64
生成AIの現状と展望: AIと共生する未来への道程
yukinaga
3
1.1k
BERTによる自然言語処理を学ぼう!【 Live!人工知能 #26】 #Live人工知能
yukinaga
0
370
iOSアプリは「感情」を宿すのか? AIとアプリの未来について
yukinaga
2
1k
iOSアプリに「意識」は宿るのか? ディープラーニングの先にある人工知能(AI)
yukinaga
6
5.7k
ヒトとAIの共生、そしてシンギュラリティ
yukinaga
0
1k
iOSと(深層)強化学習
yukinaga
6
8.8k
iOSと人工知能(AI) -GPU並列演算の仕組みと機械学習-
yukinaga
0
3.1k
最小限の実装で試す MetalによるGPUコンピューティング
yukinaga
2
2.2k
Other Decks in Technology
See All in Technology
コンピュータビジョンの社会実装について考えていたらゲームを作っていた話
takmin
1
600
Windows の新しい管理者保護モード
murachiakira
0
200
遷移の高速化 ヤフートップの試行錯誤
narirou
6
1.2k
php-conference-nagoya-2025
fuwasegu
0
150
生成AI×財務経理:PoCで挑むSlack AI Bot開発と現場巻き込みのリアル
pohdccoe
1
720
Aurora PostgreSQLがCloudWatch Logsに 出力するログの課金を削減してみる #jawsdays2025
non97
1
200
4th place solution Eedi - Mining Misconceptions in Mathematics
rist
0
140
JAWS FESTA 2024「バスロケ」GPS×サーバーレスの開発と運用の舞台裏/jawsfesta2024-bus-gps-serverless
ma2shita
3
190
Iceberg Meetup Japan #1 : Iceberg and Databricks
databricksjapan
0
370
AIエージェント時代のエンジニアになろう #jawsug #jawsdays2025 / 20250301 Agentic AI Engineering
yoshidashingo
8
3.7k
Snowflakeの開発・運用コストをApache Icebergで効率化しよう!~機能と活用例のご紹介~
sagara
1
460
入門 PEAK Threat Hunting @SECCON
odorusatoshi
0
160
Featured
See All Featured
Bash Introduction
62gerente
611
210k
BBQ
matthewcrist
87
9.5k
Scaling GitHub
holman
459
140k
Building Applications with DynamoDB
mza
93
6.2k
Designing for humans not robots
tammielis
250
25k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
640
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Optimizing for Happiness
mojombo
376
70k
Done Done
chrislema
182
16k
Transcript
"(*Ԭୈճ !ΤϯδχΞΧϑΣ
Φʔϓχϯά
ʮ൚༻ਓೳʢ"(*ʣʯͱʮಛԽܕਓೳʯ ൚༻ਓೳʢ˺ڧ͍"*ʣ ˠώτͷೳͷΑ͏ͳ൚༻ੑΛ࣋ͭ"* FHυϥ͑ΜɺమΞτϜͳͲ ಛԽܕਓೳʢ˺ऑ͍"*ʣ ˠݶఆతͳղܾਪ FHνΣεকعͷ"*ɺը૾ೝࣝͳͲ ࠷৽ͷ--.ͲͪΒʁ
"(*ͷొؒۙʁ 4*56"5*0/"-"8"3&/&44 ΑΓ IUUQTTJUVBUJPOBMBXBSFOFTTBJGSPNBHJ UPTVQFSJOUFMMJHFODF
ϊʔϕϧཧֶ © Johan Jarnestad/The Royal Swedish Academy of Sciences John
Hop fi eld and Geoffrey Hinton. Ill. Niklas Elmehed © Nobel Prize Outreach ͷϊʔϕϧཧֶɺ δϣϯɾ+ɾϗοϓϑΟʔϧυʢถࠃʣͱδΣϑϦʔɾ&ɾώϯτϯʢΧφμʣ͕ड
ϊʔϕϧཧֶ • डཧ༝ → ػցֶशͱਓχϡʔϥϧωοτϫʔΫͷج൫Λߏங͠ɺσʔλύλʔϯͷ هԱɾ࠶ݱΛՄೳʹͨ͠ޭɻ • ओͳۀ → ϗοϓϑΟʔϧυɿεϐϯܥͷཧֶͷݪཧΛԠ༻ͨ͠ʮϗοϓϑΟʔϧυ
ωοτϫʔΫʯΛ։ൃ͠ɺσʔλύλʔϯͷอଘͱ෮ݩΛ࣮ݱɻ → ώϯτϯɿʮϘϧπϚϯϚγϯʯΛ։ൃ͠ɺσʔλ͔ΒಛΛֶश͢Δٕज़ Λཱ֬ɻAIͱػցֶशͷඈ༂తͳਐలʹߩݙɻ • Өڹ → AIͱཧֶͷ༥߹ʹΑΔൃలΛଅਐ͠ɺԠ༻ͰͷՄೳੑΛେ͖֦͘େɻ
"(*Ԭͷҙٛ w "(*࣌ʹ͚ͯɺࠓ͔ΒͰ͖Δ͜ͱΛڞʹߟ͑ɺ ࣮ߦ͍ͯ͜͠͏ʂ
ӡӦऀհ w զ࠺ʢ4"*-BCגࣜձࣾʣ w ۙ౻ݑࣇʢגࣜձࣾελσΟετʣ w େ৴ߊʢ/0#%"5"גࣜձࣾʣ w ੨྄ʢςΠϧΠϯυגࣜձࣾʣ
දऀհ զ࠺ :VLJOBHB"[VNB !ZVLZ@B[ 4"*-BCגࣜձࣾදऔక w "*ؔ࿈ͷڭҭɺݚڀ w ཧֶത࢜ʢཧֶʣ w
๏େֶσβΠϯֶ෦݉ߨࢣ w 6EFNZͰສਓΛࢦಋ w ༗໊اۀͰ"*ݚमΛ୲ w ஶॻʹʮ͡ΊͯͷσΟʔϓϥʔχϯάʯͳͲ w झຯϒϥδϦΞϯॊज़"*Ξʔτ
ϋογϡλά BHJGVLVPLB
"(*Ԭ%JTDPSEίϛϡχςΟ
:PV5VCFϥΠϒ ʮ&OHJOFFSDBGF"(*ԬʯͰ:PV5VCFݕࡧ
ࠓճͷίʔυ IUUQTHJUIVCDPNZVLJOBHBIPQ fi FME@CPMU[NBOO
ϗοϓϑΟʔϧυωοτϫʔΫͱʁ
δϣϯɾϗοϓϑΟʔϧυࢯͷհ ݚڀऀͱͯ͠ͷܦྺ • ੜ·ΕɺΞϝϦΧͷཧֶऀɾੜཧֶऀ • ϓϦϯετϯେֶͰཧֶΛઐ߈ʢ1I%ʣ • ΧϦϑΥϧχΞՊେֶɺϓϦϯετϯେֶͳͲͰڭ佃 • ཧֶ͔ΒਆܦՊֶݚڀྖҬΛ֦େ
• ෳࡶܥͷݚڀͰଟେͳޭ ओͳۀͱධՁ • ɿϗοϓϑΟʔϧυωοτϫʔΫΛఏҊ • ཧֶͷ֓೦Λ༻͍ͯχϡʔϥϧωοτΛཧԽ • ݱͷਂֶशͷཧతج൫Λங͍ͨઌۦऀͷҰਓ Ill. Niklas Elmehed © Nobel Prize Outreach
ϗοϓϑΟʔϧυωοτϫʔΫͷݩจ ถࠃՊֶΞΧσϛʔلཁʹܝࡌ IUUQTXXXQOBTPSHEPJQOBT
جຊΞʔΩςΫνϟ ωοτϫʔΫߏ • ͯ͢ͷχϡʔϩϯ͕૬ޓʹ݁߹ • ֤χϡʔϩϯํʹଓɺͨͩࣗ͠ݾ݁߹ଘࡏ͠ͳ͍ • ݁߹ͷॏΈରশతʢ ʣ •
χϡʔϩϯͷঢ়ଶࢄʢ ʣ·ͨೋʢ ʣ ಈ࡞ͷಛ • ΤωϧΪʔؔ ʹجͮ͘ঢ়ଶߋ৽ ◦ ɿχϡʔϩϯ ͷᮢʢόΠΞεʣ • ඇಉظతͳঢ়ଶߋ৽ʢҰʹͭͷχϡʔϩϯʣ • ہॴతͳใͷΈͰߋ৽அ • ΤωϧΪʔ࠷খԽʹΑΔ҆ఆঢ়ଶͷऩଋ • ཧֶͷεϐϯάϥεϞσϧͱྨࣅͨ͠ৼΔ͍ wij = wji si ∈ − 1, + 1 si ∈ 0,1 E = − 1 2 ∑ i,j wij si sj − ∑ i θi si θi i
ಈ࡞ݪཧ ঢ়ଶߋ৽ͷϝΧχζϜ • ֤χϡʔϩϯͷೖྗɿ • ߋ৽نଇɿ ࢄʢۃੑʣͷ߹ɿ ೋʢ୯ۃੑʣͷ߹ɿ
• ඇಉظతͳߋ৽ʢϥϯμϜʹબΜͩͭͷχϡʔϩϯΛߋ৽ʣ • ͯ͢ͷχϡʔϩϯ͕҆ఆ͢Δ·Ͱ܁Γฦ͠ hi = ∑ j wij sj + θi si = { +1 JG hi ≥ 0 −1 JG hi < 0 si = { 1 JG hi ≥ 0 0 JG hi < 0
ಈ࡞ݪཧ ΤωϧΪʔͱऩଋ • ΤωϧΪʔؔঢ়ଶߋ৽ʹΑΓ୯ௐݮগ • γεςϜඞͣہॴ࠷খʹऩଋ • ࠷ऴঢ়ଶॳظঢ়ଶʹґଘ • ΤωϧΪʔܗͷΠϝʔδɿ
◦ࢁʢෆ҆ఆঢ়ଶʣ͔Β୩ʢ҆ఆঢ়ଶʣ ◦ෳͷ҆ఆঢ়ଶʢہॴ࠷খʣ͕ଘࡏ ◦هԱύλʔϯ҆ఆঢ়ଶͷҰͭʹରԠ
ֶशͱهԱ ֶशʢॏΈͷܾఆʣ • ݁߹ՙॏͷֶशଇɿ ʢ ʣ ◦ ɿχϡʔϩϯ ◦ ɿهԱͤ͞Δύλʔϯ
◦ ɿύλʔϯ ʹ͓͚Δχϡʔϩϯ ͷঢ়ଶ • ҰͷܭࢉͰॏΈΛܾఆʢඇ෮తʣ • ੜֶతͳϔϒଇʹجͮ͘ هԱ༰ྔͱಛ • ཧతͳهԱ༰ྔɿ ◦ ݸͷχϡʔϩϯͰ ݸͷύλʔϯΛهԱՄೳ • ϊΠζΛؚΉೖྗ͔Βͷى͕Մೳ • ύλʔϯͷҰ෦͔ΒશମΛ࠶ߏ wij = 1 N ∑p μ=1 sμ i sμ j i ≠ j N p sμ i μ i pmax ≈ 0.14N N 0.14N
Ԡ༻ྫͱಛ දతͳԠ༻ྫ • ࿈هԱγεςϜ ◦ύλʔϯ෮ݩɾϊΠζআڈ ◦ෆશͳೖྗ͔Βͷى • Έ߹Θͤ࠷దԽ ◦८ճηʔϧεϚϯ ◦εέδϡʔϦϯά
རͱݶք • རɿฒྻॲཧ͕ՄೳɺϋʔυΣΞ࣮͕༰қ • ݶքɿهԱ༰ྔͷ੍ݶʢ ʣɺہॴղʹؕΔՄೳੑ 0.14N
ൃలͱӨڹ తͳൃల • ϘϧπϚϯϚγϯͷਐԽ ◦֬తͳৼΔ͍ͷಋೖɺӅΕͷՃ • ࿈ଓϞσϧͷ։ൃ ◦ΞφϩάχϡʔϩϯͷಋೖɺΑΓ๛͔ͳදݱೳྗͷ֫ಘ ݱͷӨڹ •
ཧֶͷݟͷ׆༻ ◦ΤωϧΪʔ࠷খԽʹΑΔֶश ◦֬తΞϓϩʔνͷجૅ
ϗοϓϑΟʔϧυωοτϫʔΫͷίʔυ IUUQTHJUIVCDPNZVLJOBHBIPQ fi FME@CPMU[NBOOUSFFNBJOTFDUJPO@
ϘϧπϚϯϚγϯͱʁ
δΣϑϦʔɾώϯτϯࢯͷհ Ill. Niklas Elmehed © Nobel Prize Outreach ܦྺͱݚڀ •
ΠΪϦεੜ·ΕɺʮσΟʔϓϥʔχϯάͷʯ • τϩϯτେֶڭतɺ(PPHMF3FTFBSDIॴଐ • ೝ৺ཧֶ͔Βਓೳݚڀ • ਂֶशͷཧతجૅΛཱ֬ ओͳۀ • ޡࠩٯ๏ͷ࠶ൃݟʢʣ • %FFQ#FMJFG/FUXPSLͷఏҊʢʣ • νϡʔϦϯάडʢʣ • "*҆શੑͷܯʢʣ
ϘϧπϚϯϚγϯͷݩจ τϩϯτେֶͷΣϒαΠτʹܝࡌ IUUQTXXXDTUPSPOUPFEVdGSJU[BCTQTDPHTDJCNQEG
എܠͱੜ ։ൃͷഎܠ • ɺϗοϓϑΟʔϧυωοτϫʔΫͷݶք • ౷ܭྗֶʢϘϧπϚϯʣͷԠ༻Λண • )JOUPO4FKOPXTLJʹΑΔڞಉݚڀʢʣ • ֬తͳৼΔ͍ͷಋೖ
ओཁͳֵ৽ • ֬తͳχϡʔϩϯͷಋೖ • ԹύϥϝʔλʹΑΔ੍ޚ • ӅΕϢχοτͷಋೖ • ΤωϧΪʔ࠷খԽͱ֬తֶशͷ౷߹
جຊΞʔΩςΫνϟ ωοτϫʔΫߏ • ՄࢹͱӅΕͷߏ • ͯ͢ͷϢχοτ͕ؒํʹ݁߹ • ֬తͳঢ়ଶભҠɿ ◦
ɿঢ়ଶมԽʹ͏ΤωϧΪʔมԽ ◦ ɿԹύϥϝʔλ ΤωϧΪʔؔ • ◦ ɿϢχοτؒͷ݁߹ॏΈ ◦ ɿϢχοτͷঢ়ଶʢ·ͨʣ ◦ ɿόΠΞε߲ • Թ ʹΑͬͯঢ়ଶΛ੍ޚ p(si = 1) = 1 1 + e−ΔEi/T ΔEi T E = − ∑ i<j wij si sj − ∑ i θi si wij si θi T
ಈ࡞ϝΧχζϜ ঢ়ଶભҠͷΈ • ϘϧπϚϯʹै͏֬తͳঢ়ଶߋ৽ ◦ ◦ ɿؔ ɿશϢχοτͷঢ়ଶϕΫτϧ •
ΪϒεαϯϓϦϯάʹΑΔঢ়ଶભҠ ◦ϥϯμϜʹબΜͩϢχοτΛ֬తʹߋ৽ ◦ฏߧঢ়ଶʹ౸ୡ͢Δ·Ͱ܁Γฦ͠ Թ੍ޚͱ࠷దԽ • γϛϡϨʔςουΞχʔϦϯάͷར༻ ◦ߴԹ͔Β։࢝͠ɺঃʑʹԹΛԼ͛Δ ◦ہॴղճආͱେҬత࠷దԽ • ԹʹΑΔ୳ࡧɾऩଋͷ੍ޚ ◦ߴԹɿϥϯμϜͳ୳ࡧԹɿہॴతͳ࠷దԽ P(s) = 1 Z e−E(s)/T Z s
ֶशΞϧΰϦζϜ ֶशͷجຊࣜ • ॏΈߋ৽ଇɿ ◦ ɿֶश ◦ ɿσʔλͷظʢਖ਼૬ʣ ◦
ɿϞσϧͷظʢෛ૬ʣ ্࣮ͷ • ίϯτϥεςΟϒμΠόʔδΣϯεʢ$%ʣ๏ͷಋೖ ◦શͳऩଋΛͨͣʹֶश ◦গεςοϓͷαϯϓϦϯάͰ༻ • Թεέδϡʔϧͷઃఆ ◦ֶशॳظߴԹͰ୳ࡧతʹ ◦ֶशޙظԹͰऩଋΛଅਐ Δwij = η(⟨si sj ⟩data − ⟨si sj ⟩model ) η ⟨ ⋅ ⟩data ⟨ ⋅ ⟩model
ൃలͱԠ༻ Ϟσϧͷൃల • ੍ݶϘϧπϚϯϚγϯʢ3#.ʣͷߟҊ ◦ؒͷΈͷ݁߹ʹΑΔޮԽ ◦%FFQ#FMJFG/FUXPSLͷجૅʹ • %FFQ-FBSOJOHֵ໋ͷߩݙ ◦ਂֶशͷࣄલֶशख๏ͱͯ͠׆༻ ◦ੜϞσϧͷجຊ֓೦Λཱ֬
ϘϧπϚϯϚγϯͷίʔυ IUUQTHJUIVCDPNZVLJOBHBIPQ fi FME@CPMU[NBOOUSFFNBJOTFDUJPO@
Ԭͷ"(* Γ্͍͖͛ͯ·͠ΐ͏ʂ