Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - s...
Search
yukinagae
February 19, 2019
Technology
2
500
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - short ver.
yukinagae
February 19, 2019
Tweet
Share
More Decks by yukinagae
See All by yukinagae
BerglasとCloud Buildを使って秘密情報をセキュアに(できるかも) / Berglas with Cloud Build
yukinagae
1
1.1k
ある機械学習システムをAWSからGCP/GKEに移行した話 / Machine Learning System Migration from AWS to GKE
yukinagae
8
3.9k
Python用のマイクロサービスフレームワークを探す旅 / A journey to find a microservices framework for Python
yukinagae
0
1.1k
AWSからGCP/GKEに移行してみた / From AWS to GKE on GCP
yukinagae
6
8.8k
Spotifyのレコメンドを理解する / Recommender Systems using Collaborative Filtering - Spotify
yukinagae
1
620
kintone事例紹介 JAMS.TV ケーススタディ / kintone-casestudy-jamstv
yukinagae
0
210
BigQuery MLの新機能紹介 Cloud Next '19 / BigQuery ML New Features Announced at Google Cloud Next 2019
yukinagae
2
16k
学習行動データ分析基盤 Learning Record Store(LRS)開発事例 / LRS case study
yukinagae
5
1.9k
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle
yukinagae
2
3k
Other Decks in Technology
See All in Technology
Pwned Labsのすゝめ
ken5scal
2
460
データベースの負荷を紐解く/untangle-the-database-load
emiki
2
520
NFV基盤のOpenStack更新 ~9世代バージョンアップへの挑戦~
vtj
0
360
脳波を用いた嗜好マッチングシステム
hokkey621
0
290
【内製開発Summit 2025】イオンスマートテクノロジーの内製化組織の作り方/In-house-development-summit-AST
aeonpeople
2
700
あなたが人生で成功するための5つの普遍的法則 #jawsug #jawsdays2025 / 20250301 HEROZ
yoshidashingo
2
310
日経のデータベース事業とElasticsearch
hinatades
PRO
0
240
EDRの検知の仕組みと検知回避について
chayakonanaika
12
5k
JavaにおけるNull非許容性
skrb
2
2.6k
生成AI “再”入門 2025年春@WIRED TUESDAY EDITOR'S LOUNGE
kajikent
0
130
技術スタックだけじゃない、業務ドメイン知識のオンボーディングも同じくらいの量が必要な話
niftycorp
PRO
0
110
AWS Well-Architected Frameworkで学ぶAmazon ECSのセキュリティ対策
umekou
2
150
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
182
22k
Thoughts on Productivity
jonyablonski
69
4.5k
Practical Orchestrator
shlominoach
186
10k
Typedesign – Prime Four
hannesfritz
40
2.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
A better future with KSS
kneath
238
17k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
30
4.6k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
260
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
本当に簡単なkaggle の始め方 @yukinagae
自己紹介 永江悠紀 @yukinagae グロービス 2018/8 ~ データサイエンティスト(Python/Go) 経歴 元Java/Scala エンジニア
オーストラリアでデータ分析を勉強 → 今に至る 最近はベイズ統計モデリングに興味ある(˘ω˘) スヤァ
Agenda 1. kaggle とは? 2. kaggle の仕組み 3. やってみた( `・ω
・´) 3
1. kaggle とは? 4
世界最大の機械学習・データ分析の コンペを主催するプラットフォーム 5
つまり 6
データサイエンティストの 世界最強を決める大会 7
kaggle の規模 ユーザ数: 50 万以上 国: 190 カ国以上 らしい( `・ω
・´) 8
2. kaggle の仕組み 9
大まかな流れ 1. 主催者(企業など)がコンペを主催する a. データを準備 b. 問題を定義する 2. 参加者は様々な手法を使ってベストなモデルを構 築し、予測を提出する
スコアやランキングが分かる 3. 主催者は、精度が高い予測に賞金を払う 10
ということで 11
3. 早速kaggle をやってみた ( `・ω ・´) 12
1. コンペを選ぶ 13
例えばこのコンペ( `・ω ・´) 14
2. コンペの内容を読む 1. 概要: 大まかに把握 2. 評価指標: これが一番大事( `・ω ・´)
3. 賞金: できればほしいよね 4. 期限: 時間厳守 5. データ: だいたいCSV ファイル(BigQuery も) 15
3. 他の参加者から学ぶ 1. コード(kernel ) 2. ディスカッション(discussion ) 16
いろんな人がコードを載せてくれてるので助かる see: Simple Exploration+Baseline - GA Customer Revenue | Kaggle
17
4. 他の参加者の方法を真似てみる コードをパクってローカルPC で実行するだけの簡単 なお仕事( `・ω ・´) 18
5. 助け合う <= New! ちょうどライブラリのバージョンで上手く動作しなか ったので、上手くいった方法を教え合う( `・ω ・´) 19
6. めんどくさいので人のコードを fork する 20
fork したコードを実行するだけ( `・ω ・´) 21
実行中 22
7. 予測を提出する 23
8. スコアとランクを確認 689 位(全1,031 チーム) ちーん( `・ω ・´) 24
結局言いたいのは 25
パクった後が勝負 26
まとめ kaggle はデータサイエンティストのNo.1 を決める 大会 とりあえず人のコードをパクって頑張る kaggle は沼( `・ω ・´)
27
参考資料 Kaggle - Wikipedia What is Kaggle, Why I Participate,
What is the Impact? fast.ai · Making neural nets uncool again deeplearning.ai: Announcing new Deep Learning courses on Coursera 28
おわり( `・ω ・´) ようこそkaggle 沼へ 29
最後にいちおう We're hiring! 30