Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - s...
Search
yukinagae
February 19, 2019
Technology
2
550
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - short ver.
yukinagae
February 19, 2019
Tweet
Share
More Decks by yukinagae
See All by yukinagae
Devin, 正しい付き合い方と使い方 / Living and Working with Devin
yukinagae
3
1.3k
BerglasとCloud Buildを使って秘密情報をセキュアに(できるかも) / Berglas with Cloud Build
yukinagae
1
1.2k
ある機械学習システムをAWSからGCP/GKEに移行した話 / Machine Learning System Migration from AWS to GKE
yukinagae
8
4.1k
Python用のマイクロサービスフレームワークを探す旅 / A journey to find a microservices framework for Python
yukinagae
0
1.2k
AWSからGCP/GKEに移行してみた / From AWS to GKE on GCP
yukinagae
6
20k
Spotifyのレコメンドを理解する / Recommender Systems using Collaborative Filtering - Spotify
yukinagae
1
790
kintone事例紹介 JAMS.TV ケーススタディ / kintone-casestudy-jamstv
yukinagae
0
260
BigQuery MLの新機能紹介 Cloud Next '19 / BigQuery ML New Features Announced at Google Cloud Next 2019
yukinagae
2
16k
学習行動データ分析基盤 Learning Record Store(LRS)開発事例 / LRS case study
yukinagae
5
2k
Other Decks in Technology
See All in Technology
Greenは本当にGreenか? - B/GデプロイとAPI自動テストで安心デプロイ
kaz29
0
110
レガシーで硬直したテーブル設計から変更容易で柔軟なテーブル設計にする
red_frasco
4
430
re:Invent2025 事前勉強会 歴史と愉しみ方10分LT編
toshi_atsumi
0
220
How We Built a Secure Sandbox Platform for AI
flatt_security
1
100
メッセージ駆動が可能にする結合の最適化
j5ik2o
6
850
TypeScript 6.0で非推奨化されるオプションたち
uhyo
12
3.2k
SRE視点で振り返るメルカリのアーキテクチャ変遷と普遍的な考え
foostan
2
410
持続可能なアクセシビリティ開発
azukiazusa1
6
280
なぜインフラコードのモジュール化は難しいのか - アプリケーションコードとの本質的な違いから考える
mizzy
60
21k
はじめての OSS コントリビューション 〜小さな PR が世界を変える〜
chiroito
4
350
AIを前提に、業務を”再構築”せよ IVRyの9ヶ月にわたる挑戦と未来の働き方 (BTCONJP2025)
yueda256
1
790
大規模プロダクトで実践するAI活用の仕組みづくり
k1tikurisu
5
1.7k
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.3k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Docker and Python
trallard
46
3.7k
Automating Front-end Workflow
addyosmani
1371
200k
How GitHub (no longer) Works
holman
315
140k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
980
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
39
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
Transcript
本当に簡単なkaggle の始め方 @yukinagae
自己紹介 永江悠紀 @yukinagae グロービス 2018/8 ~ データサイエンティスト(Python/Go) 経歴 元Java/Scala エンジニア
オーストラリアでデータ分析を勉強 → 今に至る 最近はベイズ統計モデリングに興味ある(˘ω˘) スヤァ
Agenda 1. kaggle とは? 2. kaggle の仕組み 3. やってみた( `・ω
・´) 3
1. kaggle とは? 4
世界最大の機械学習・データ分析の コンペを主催するプラットフォーム 5
つまり 6
データサイエンティストの 世界最強を決める大会 7
kaggle の規模 ユーザ数: 50 万以上 国: 190 カ国以上 らしい( `・ω
・´) 8
2. kaggle の仕組み 9
大まかな流れ 1. 主催者(企業など)がコンペを主催する a. データを準備 b. 問題を定義する 2. 参加者は様々な手法を使ってベストなモデルを構 築し、予測を提出する
スコアやランキングが分かる 3. 主催者は、精度が高い予測に賞金を払う 10
ということで 11
3. 早速kaggle をやってみた ( `・ω ・´) 12
1. コンペを選ぶ 13
例えばこのコンペ( `・ω ・´) 14
2. コンペの内容を読む 1. 概要: 大まかに把握 2. 評価指標: これが一番大事( `・ω ・´)
3. 賞金: できればほしいよね 4. 期限: 時間厳守 5. データ: だいたいCSV ファイル(BigQuery も) 15
3. 他の参加者から学ぶ 1. コード(kernel ) 2. ディスカッション(discussion ) 16
いろんな人がコードを載せてくれてるので助かる see: Simple Exploration+Baseline - GA Customer Revenue | Kaggle
17
4. 他の参加者の方法を真似てみる コードをパクってローカルPC で実行するだけの簡単 なお仕事( `・ω ・´) 18
5. 助け合う <= New! ちょうどライブラリのバージョンで上手く動作しなか ったので、上手くいった方法を教え合う( `・ω ・´) 19
6. めんどくさいので人のコードを fork する 20
fork したコードを実行するだけ( `・ω ・´) 21
実行中 22
7. 予測を提出する 23
8. スコアとランクを確認 689 位(全1,031 チーム) ちーん( `・ω ・´) 24
結局言いたいのは 25
パクった後が勝負 26
まとめ kaggle はデータサイエンティストのNo.1 を決める 大会 とりあえず人のコードをパクって頑張る kaggle は沼( `・ω ・´)
27
参考資料 Kaggle - Wikipedia What is Kaggle, Why I Participate,
What is the Impact? fast.ai · Making neural nets uncool again deeplearning.ai: Announcing new Deep Learning courses on Coursera 28
おわり( `・ω ・´) ようこそkaggle 沼へ 29
最後にいちおう We're hiring! 30