Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - s...
Search
yukinagae
February 19, 2019
Technology
2
510
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - short ver.
yukinagae
February 19, 2019
Tweet
Share
More Decks by yukinagae
See All by yukinagae
Devin, 正しい付き合い方と使い方 / Living and Working with Devin
yukinagae
3
930
BerglasとCloud Buildを使って秘密情報をセキュアに(できるかも) / Berglas with Cloud Build
yukinagae
1
1.1k
ある機械学習システムをAWSからGCP/GKEに移行した話 / Machine Learning System Migration from AWS to GKE
yukinagae
8
3.9k
Python用のマイクロサービスフレームワークを探す旅 / A journey to find a microservices framework for Python
yukinagae
0
1.1k
AWSからGCP/GKEに移行してみた / From AWS to GKE on GCP
yukinagae
6
8.8k
Spotifyのレコメンドを理解する / Recommender Systems using Collaborative Filtering - Spotify
yukinagae
1
650
kintone事例紹介 JAMS.TV ケーススタディ / kintone-casestudy-jamstv
yukinagae
0
220
BigQuery MLの新機能紹介 Cloud Next '19 / BigQuery ML New Features Announced at Google Cloud Next 2019
yukinagae
2
16k
学習行動データ分析基盤 Learning Record Store(LRS)開発事例 / LRS case study
yukinagae
5
1.9k
Other Decks in Technology
See All in Technology
時間がないなら、つくればいい 〜数十人規模のチームが自律性を発揮するために試しているいくつかのこと〜
kakehashi
PRO
22
5k
Datadog のトライアルを成功に導く技術 / Techniques for a successful Datadog trial
nulabinc
PRO
0
120
DynamoDB のデータを QuickSight で可視化する際につまづいたこと/stumbling-blocks-when-visualising-dynamodb-with-quicksight
emiki
0
140
Azure × MCP 入門
ry0y4n
8
1.5k
2025年8月から始まるAWS Lambda INITフェーズ課金/AWS Lambda INIT phase billing changes
quiver
1
860
genspark_presentation.pdf
haruki_uiru
1
230
エンジニアリングで組織のアウトカムを最速で最大化する!
ham0215
1
300
DjangoCon Europe 2025 Keynote - Django for Data Science
wsvincent
0
520
社内 Web システムのフロントエンド技術刷新: React Router v7 vs. TanStack Router
musasabibyun
0
110
ソフトウェアテスト 最初の一歩 〜テスト設計技法をワークで体験しながら学ぶ〜 #JaSSTTokyo / SoftwareTestingFirstStep
nihonbuson
PRO
1
110
Cursorを全エンジニアに配布 その先に見据えるAI駆動開発の未来 / 2025-05-13-forkwell-ai-study-1-cursor-at-loglass
itohiro73
0
200
非root化Androidスマホでも動く仮想マシンアプリを試してみた
arkw
0
120
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.2k
Building an army of robots
kneath
305
45k
Visualization
eitanlees
146
16k
How GitHub (no longer) Works
holman
314
140k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Side Projects
sachag
453
42k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Unsuck your backbone
ammeep
671
57k
Transcript
本当に簡単なkaggle の始め方 @yukinagae
自己紹介 永江悠紀 @yukinagae グロービス 2018/8 ~ データサイエンティスト(Python/Go) 経歴 元Java/Scala エンジニア
オーストラリアでデータ分析を勉強 → 今に至る 最近はベイズ統計モデリングに興味ある(˘ω˘) スヤァ
Agenda 1. kaggle とは? 2. kaggle の仕組み 3. やってみた( `・ω
・´) 3
1. kaggle とは? 4
世界最大の機械学習・データ分析の コンペを主催するプラットフォーム 5
つまり 6
データサイエンティストの 世界最強を決める大会 7
kaggle の規模 ユーザ数: 50 万以上 国: 190 カ国以上 らしい( `・ω
・´) 8
2. kaggle の仕組み 9
大まかな流れ 1. 主催者(企業など)がコンペを主催する a. データを準備 b. 問題を定義する 2. 参加者は様々な手法を使ってベストなモデルを構 築し、予測を提出する
スコアやランキングが分かる 3. 主催者は、精度が高い予測に賞金を払う 10
ということで 11
3. 早速kaggle をやってみた ( `・ω ・´) 12
1. コンペを選ぶ 13
例えばこのコンペ( `・ω ・´) 14
2. コンペの内容を読む 1. 概要: 大まかに把握 2. 評価指標: これが一番大事( `・ω ・´)
3. 賞金: できればほしいよね 4. 期限: 時間厳守 5. データ: だいたいCSV ファイル(BigQuery も) 15
3. 他の参加者から学ぶ 1. コード(kernel ) 2. ディスカッション(discussion ) 16
いろんな人がコードを載せてくれてるので助かる see: Simple Exploration+Baseline - GA Customer Revenue | Kaggle
17
4. 他の参加者の方法を真似てみる コードをパクってローカルPC で実行するだけの簡単 なお仕事( `・ω ・´) 18
5. 助け合う <= New! ちょうどライブラリのバージョンで上手く動作しなか ったので、上手くいった方法を教え合う( `・ω ・´) 19
6. めんどくさいので人のコードを fork する 20
fork したコードを実行するだけ( `・ω ・´) 21
実行中 22
7. 予測を提出する 23
8. スコアとランクを確認 689 位(全1,031 チーム) ちーん( `・ω ・´) 24
結局言いたいのは 25
パクった後が勝負 26
まとめ kaggle はデータサイエンティストのNo.1 を決める 大会 とりあえず人のコードをパクって頑張る kaggle は沼( `・ω ・´)
27
参考資料 Kaggle - Wikipedia What is Kaggle, Why I Participate,
What is the Impact? fast.ai · Making neural nets uncool again deeplearning.ai: Announcing new Deep Learning courses on Coursera 28
おわり( `・ω ・´) ようこそkaggle 沼へ 29
最後にいちおう We're hiring! 30