Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scene Text Detection and Recognition: The Deep ...
Search
Yustoris
March 29, 2019
Research
0
1.1k
Scene Text Detection and Recognition: The Deep Learning Era
Yustoris
March 29, 2019
Tweet
Share
More Decks by Yustoris
See All by Yustoris
Introduction to PyTorch Lightning
yustoris
0
480
Introduction to Cuneiform Texts
yustoris
0
250
Other Decks in Research
See All in Research
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
190
SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery
satai
3
220
90 分で学ぶ P 対 NP 問題
e869120
18
7.5k
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
210
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
5
2.7k
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
550
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
820
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
650
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
610
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.6k
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
220
Cross-Media Information Spaces and Architectures
signer
PRO
0
220
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Typedesign – Prime Four
hannesfritz
42
2.7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
960
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
GraphQLとの向き合い方2022年版
quramy
49
14k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Faster Mobile Websites
deanohume
307
31k
Writing Fast Ruby
sferik
628
62k
Transcript
Scene Text Detection and Recognition: The Deep Learning Era 4IBOHCBOH-POH
9JO)F $POH:BP !ZVTUPSJTPOBS9JW5JNFT
֓ཁ w ܠจࣈೝࣝ 4DFOF5FYU3FDPHOJUJPO ʹ͓͚Δ ਂֶशϕʔεͷख๏ʹର͢ΔαʔϕΠ w ྺ࢙ΛৼΓฦΓͭͭख๏ͷτϨϯυ͔Βσʔληοτ·Ͱɺ แׅతʹѻ͍ͬͯΔ
1. Introduction + 2. Methodology Before the Deep Learning Era
w ଟ༷ੑ ݴޠɾܗ ࣈମɾࣈܗɾॻܗ ɾํɾ৭ɾॎԣൺ͕ଟ༷ w എܠͷଘࡏ എܠͷܗঢ়͕จࣈͱۃʹࣅ͍ͯΔ߹ɺѱӨڹ͕େ͖͍ w ը࣭ͷӨڹ
ը࣭͕ѱ͍ͱจࣈ෦ͷ௵ΕᕷΈ͕େ͖͘ͳΓɺѱӨڹ͕େ͖͍ ܠจࣈೝࣝͷ͠͞ <>IUUQTXXXNPSJTBXBDPKQDVMUVSFEJDUJPOBSZΑΓൈਮ <>
ਂֶशҎલͷܠจࣈೝࣝ w ಛྔநग़ ˠจࣈ୯ҐͰͷநग़ ˠߦݕग़ ˠࣈ w ༷ʑͳϞσϧΛΈ߹ΘͤͨQJQMJOF จ'JH
3. Methodology in the Deep Learning Era
ख๏ͷτϨϯυ w 4UFQT ݕग़ %FUFDUJPO ೝࣝ 3FDPHOJUJPO ͷஈ֊ w
%FUFDUJPOʜจࣈྖҬͷநग़ w 3FDPHOJUJPOʜநग़ͨ͠จࣈྖҬʹؚ·ΕΔ༰ͷࣈ 5SBOTDSJQUJPO w &OEUPFOE %FUFDUJPOͱ3FDPHOJUJPOΛҰؾ௨؏Ͱߦ͏ จ'JH
ख๏ͷτϨϯυछผ จ'JH
ख๏ͷτϨϯυछผ จ'JH %FUFDUJPO Ұൠମݕग़ͷख๏Λجຊͱ͠ɺ จࣈྖҬʹ͋Γ͕ͪͳಛ FHํɾΞεϖΫτͷଟ༷ੑ ʹ߹Θ֦ͤͯு
ख๏ͷτϨϯυछผ จ'JH 3FDPHOJUJPO $POOFDUJPOJTU5FNQPSBM$MBTTJpDBUJPO $5$ ͱ"UUFOUJPOͷڧ
ख๏ͷτϨϯυछผ จ'JH &OEUP&OE %FUFDUJPOͱ3FDPHOJUJPOͷ྆ϞσϧΛ݁߹
ख๏ͷτϨϯυछผ จ'JH पลٕज़ "VYJMJBSZ5FDIOPMPHJFT ͷϝΠϯ w ਓσʔλͷੜ w จࣈɾ୯ޠྖҬͷΞϊςʔγϣϯͷڭࢣ͋Γֶश
3.1 Detection
֓ཁ w Ұൠମݕग़༻ͷϞσϧΛ֦ு͢Δͷ͕جຊ େ͖͘"ODIPSCBTFEͱ3FHJPOQSPQPTBMʹྨͰ͖Δ w ݕग़ཻେ͖͘ύλʔϯ ςΩετશମΛ#PVOEJOH#PY ## Ͱݕग़
ΑΓࡉ͔͍୯ҐͰ ୯ޠͳͲͰ ݕग़͠ɺޙͰ݁߹ 4FH-JOL<4J >จͷը૾͔Β ൈਮɾҰ෦Ճ
ྖҬݕग़ͷجຊํ w "ODIPSCBTFE w ೖྗը૾Λݻఆͷ(SJEʹׂ͠ɺ֤(SJEதͷΛத৺ͱ͢Δ## "ODIPS Λෳਪఆ ##ީิݻఆΞεϖΫτΛ࠾༻ w
:0-0<3FENPO > 44%<-JV > ͳͲ͕ϕʔεϞσϧ w 3FHJPOQSPQPTBM w ೖྗը૾ʹରͯ͠ɺಛྔͳͲ͔ΒจࣈྖҬީิ 3FHJPOQSPQPTBM Λਪఆ͠ɺ ͦΕͧΕͷީิʹରͯ͠จࣈྖҬ͔Ͳ͏͔Λఆ w 3$//<(JSTIJDL > ͳͲ͕ϕʔεϞσϧ χϡʔϥϧωοτϫʔΫͰྖҬݕग़ˠޙॲཧ
"ODIPSCBTFE (SJE #PVOEJOH#PY ## ͜͜Ͱͭ ޙஈʹߦ͘΄Ͳ(SJEׂ͕ݮΓɺ "ODIPS͕େ͖͘ͳΔ ##ݕग़ཻΛௐ QPPMJOHͰ##ใΛಘΔ
ଛࣦɺਪఆ##ͱਖ਼ղ##ͱͷҐஔޡࠩͱΫϥε֬৴ͷࠩ ྫ5FYU#PYFT<-JP > 44%ϕʔε :0-0จͷը૾͔Β ൈਮɾҰ෦Ճ
3FHJPO1SPQPTBM 'BTUFS3$//ʹՃ͑ͯɺ3FHJPOQSPQPTBMநग़ͷࡍɺ3FHJPOͷճసΛߟྀ͍ͯ͠Δ 3FHJPOQSPQPTBMΛநग़ ྫ<.B > 'BTUFS3$//ϕʔε എܠ͔จࣈྖҬ͔ͷྨ
5FYUTQFDJpD.FUIPET w ςΩετશମΛճͰݕग़ͤͣɺখ୯ҐͰݕग़ͨ͠ޙʹ݁߹ w จࣈྖҬҰൠମΑΓํͳͲ͕༷ʑͳͨΊɺ ͭͷ##Λ͍͖ͳΓݕग़͢Δͷෆదͳ߹͕͋Δ w ୯ҐจࣈྖҬͷখ෦ $PNQPOFOUT ͱϐΫηϧ
1JYFM ͕͋Δ
$PNQPOFOUT-FWFM 4FH-JOLจ'JHVSF ྫ4FH-JOL
1JYFM-FWFM 1JYFM-JOLจ'JHVSF 1JYFM-JOLจ'JHVSF ྫ1JYFM-JOL<%FOH > w ֤ϐΫηϧͰɺྡ͢ΔͭͷϐΫηϧ͕ ಉ͡จࣈྖҬʹଐ͢Δ͔Λఆ w ࣄલͷ##ਪఆ͕͍Βͣɺۙ͢ΔจࣈྖҬऔΓ͍͢
4QFDJpD5BSHFUT w ൘ͳͲʹ͋Γ͕ͪͳɺۃͳΞεϖΫτൺɾΈɾۂɾಛघϑΥϯτ ͷରԠ͕ϝΠϯ w ྫ͑ɺจࣈͷۂʹରͯ͠5FYU4OBLF<-POH > ͕##୯ҐͰͳ͘ԁΛ ϕʔεͱͨ͠ྖҬநग़ΛࢼΈ͍ͯΔ
3.2 Recognition
֓ཁ w %FUFDUJPOͰநग़ͨ͠จࣈྖҬʹରͯ͠ࣈΛߦ͏ w 3//ϕʔεͷख๏͕΄ͱΜͲͰɺͦͷதͰ $5$ $POOFDUJPOJTU5FNQPSBM$MBTTJpDBUJPO ͱ"UUFOUJPO͕ ଟ͘ར༻͞Ε͍ͯΔ
$5$ <(SBWFT > w @ ۭന ΛؚΊͨจࣈ୯ҐͰͷੜ֬ΛٻΊΔͨΊͷଛࣦؔ w ೖྗͱग़ྗͷBMJHONFOUಉ࣌ʹߦ͑ΔͨΊɺ ೖྗͱग़ྗͷҧ͍Λߟ͑ͳͯ͘Α͍
HHHH_eell_lloo_ Hello ೖྗ ग़ྗ
$3// <4IJ > w ಛϕΫτϧΛೖྗͱͨ͠ CJ-45. $5$ͰࣈΛߦ͏ w 3$//ͱ໊લ͕ࠞಉͦ͠͏ʜʜ $5$Λར༻
ಛϕΫτϧΛ-45.ͷ લஈͰநग़ ʨ
"UUFOUJPO w ػց༁ʹ͓͚Δ"UUFOUJPO<#BIEBOBV -VPOH > Λԉ༻ w ೖྗը૾ʹରͯ͠લஈͰΈࠐΈͳͲʹΑΓ %FDPEFSͷೖྗͱͳΔಛϕΫτϧΛநग़͓ͯ͘͠
<"SCJUSBSJMZPSJFOUFEUFYUSFDPHOJUJPO $IFOH > w %FDPEFSͷิॿೖྗͱͯ͠ɺจࣈ୯Ґͷ##Λ ༩͑ΔͳͲͷ͕औΒΕΔ߹͋Δ <'PDVTJOHBUUFOUJPO5PXBSETBDDVSBUFUFYUSFDPHOJUJPOJOOBUVSBMJNBHFT $IFOH > ೖྗͷಛϕΫτϧ จ'JH
3.3 End-to-end System
֓ཁ w %FUFDUJPOͱ3FDPHOJUJPOͷϞσϧΛͦͷ··݁߹͢Δ %FUFDUJPOϞσϧͰݕग़ͨ͠จࣈྖҬ͕3FDPHOJUJPOϞσϧͷೖྗͱͳΔ w 3FDPHOJUJPOʹಛϚοϓ͚ͩ͢Α͏ʹ͢Δ จ'JH 4&&<#BSU[
>ͳͲ จ'JH
3.4 Auxiliary Technologies
"VYJMJBSZ5FDIOPMPHJFT w ਓσʔλͷੜ 4ZOUIFUJD%BUB w ΄ͱΜͲͷਓखͰΞϊςʔγϣϯ͞Εͨσʔλͷنઍఔ w എܠը૾ʹରͯ͠ɺΑΓࣗવʹจࣈྖҬΛॏͶΔ͜ͱΛඪͱ͢Δ w
ϒʔτετϥοϐϯά #PPUTUSBQQJOH w ڭࢣ͋ΓֶशʹΑΔΞϊςʔγϣϯίετͷܰݮ w গྔͷΞϊςʔγϣϯʹΑΓֶशͨ͠ϞσϧͰྖҬநग़ ˠείΞͰΓˠநग़ͨ͠ྖҬΛڭࢣͱͯ͠࠶ֶशˠʜɹͷ܁Γฦ͠
4.1 Benchmark Datasets
#FODINBSL%BUBTFU w 4ZOUIFUJD%BUB w #PPUTUSBQQJOH
#FODINBSL%BUBTFU w 4ZOUIFUJD%BUB w #PPUTUSBQQJOH
Performance on Dataset (Detection)
Performance on Dataset (Recognition) &SSBUBʹΑΔͱͱΒ͍͠
Performance on Dataset (End-to-End) w8PSE4QPUUJOH ରͱͳΔޠኮͷࣈੑೳ w&OEUP&OE ରޠኮҎ֎ͷจશମͷࣈੑೳ
6. Conclusion
4UBUVT2VPBOE'VUVSF5SFOET w σʔληοτϞσϧͷଟ༷ੑʹର͢Δؤ݈ੑ w ۂ͕ͬͨ DVSWFE จࣈͳͲɺಛघͳέʔεΛؚΉσʔληοτগͳ͍ w ϞσϧσʔληοτͷΈʹ࠷దԽͨ͠ධՁ͕ଟ͍ w
ଟݴޠରԠ ϞσϧσʔληοτෳݴޠΛಉ࣌ʹѻ͏͜ͱΛఆ͍ͯ͠ͳ͍ w ߴԽ ਓ͕ؒͻͱݟͯจࣈΛೝࣝͰ͖Δͷʹରͯ͠ɺ·ͩ·͍ͩ '14తʹఔ্͕ݶ