Upgrade to Pro — share decks privately, control downloads, hide ads and more …

decisiontree

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for yuki yuki
February 07, 2021
3.2k

 decisiontree

Avatar for yuki

yuki

February 07, 2021
Tweet

Transcript

  1. 4 分類木の構築イメージ ✓ 2つのクラスを分類可能なYes/No形式の質問を構築する x 1 x 2 10 x

    1 x 2 10 5 x 1 x 2 10 5 4 質問① 質問② 質問③ x 2 > 10 ? x 1 > 5 ? Class A Class B Yes No x 2 > 4 ? Yes No Yes No Class A Class B ① ② ③ 構築する分類木
  2. 5 回帰木のイメージ ✓ 回帰木も同様にYes/No形式の質問を構築する ✓ 回帰木の出力は,例えば領域内の平均値 x 1 x 2

    10 5 4 5.0 4.8 4.6 2.3 4.5 4.3 1.9 2.1 3.3 3.1 3.5 x 2 > 10 ? x 1 > 5 ? y = 4.8 Yes No x 2 > 4 ? Yes No Yes No 構築する回帰木 y = 4.4 y = 3.3 y = 2.2 y(i) y(i): 各データの出力値 ※各領域の平均値を出力とする
  3. 8 分類木で扱う損失関数 ✓ 分類木で扱う損失関数には以下のようなものが存在 𝐻 𝑄𝑚 = ෍ 𝑘 𝑝𝑚𝑘

    1 − 𝑝𝑚𝑘 ジニ係数 交差エントロピー Misclassification 𝐻 𝑄𝑚 = − ෍ 𝑘 𝑝𝑚𝑘 log 𝑝𝑚𝑘 𝐻 𝑄𝑚 = 1 − max 𝑘 𝑝𝑚𝑘 𝐻 𝑄𝑚 : m番目のノードの損失関数 𝑘: 分類するクラス数 (2クラス分類 ⇒ k=1,2) 𝑝𝑚𝑘 : m番目のノードにおける クラス k のサンプルの割合
  4. 9 回帰木で扱う損失関数 ✓ 回帰木で扱う損失関数には以下のようなものが存在 𝐻 𝑄𝑚 = 1 𝑁𝑚 ෍

    𝑗 𝑦(𝑗) − ത 𝑦𝑚 平均二乗誤差 Half Poisson Deviance 平均絶対誤差 𝐻 𝑄𝑚 = 1 𝑁𝑚 ෍ 𝑗 𝑦(𝑗) log 𝑦(𝑗) ത 𝑦𝑚 − 𝑦(𝑗) + ത 𝑦𝑚 𝐻 𝑄𝑚 = 1 𝑁𝑚 ෍ 𝑗 𝑦(𝑗) − median 𝑦(𝑗) 𝑁𝑚 : m番目のノードのサンプル数 𝑦(𝑗): m番目のノードの j番目の目的変数の値 ത 𝑦𝑚 : m番目のノードの 全ての目的変数の平均値