Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIと最適化の違いをうっかり聞いてしまう前に
Search
Monta Yashi
September 24, 2021
Education
0
420
AIと最適化の違いをうっかり聞いてしまう前に
最近ちょっと聞くことが多い数理最適化。
エーアイとどう違うなかなと思った時にチラ見して3分でわかった気分になる資料
Monta Yashi
September 24, 2021
Tweet
Share
More Decks by Monta Yashi
See All by Monta Yashi
クロスワードを GPT4と量子コンピュータに解かせよう
84monta
0
120
虫食い算を最適化で解決する
84monta
0
140
Marigold
84monta
0
350
幸せをさがし続けて 真実に気づいた話
84monta
0
97
Other Decks in Education
See All in Education
子どものためのプログラミング道場『CoderDojo』〜法人提携例〜 / Partnership with CoderDojo Japan
coderdojojapan
PRO
4
18k
JAPAN AI CUP Prediction Tutorial
upura
2
720
TinyGoをWebブラウザで動かすための方法+アルファ_20260201
masakiokuda
2
230
Introduction - Lecture 1 - Next Generation User Interfaces (4018166FNR)
signer
PRO
2
4.4k
学習指導要領と解説に基づく学習内容の構造化の試み / Course of study Commentary LOD JAET 2025
masao
0
130
RGBでも蛍光を!? / RayTracingCamp11
kugimasa
2
380
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
780
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
170
焦りと不安を、技術力に変える方法 - 新卒iOSエンジニアの失敗談と成長のフレームワーク
hypebeans
1
660
ThingLink
matleenalaakso
28
4.3k
AWS re_Invent に全力で参加したくて筋トレを頑張っている話
amarelo_n24
2
130
1125
cbtlibrary
0
170
Featured
See All Featured
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Producing Creativity
orderedlist
PRO
348
40k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Faster Mobile Websites
deanohume
310
31k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Everyday Curiosity
cassininazir
0
130
Code Review Best Practice
trishagee
74
20k
How to build a perfect <img>
jonoalderson
1
4.9k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
180
Navigating Weather and Climate Data
rabernat
0
110
A Soul's Torment
seathinner
5
2.3k
Transcript
AIと数理最適化の違いを うっかり 聞いてしまう前に読む資料 ~解答者の葛藤を和らげてあげるために~
数理最適化の話をしたときに出る質問 Top3 質問1「AIと最適化何が違うんですか?」 質問2「AIと最適化何が違うんですか?」 質問3「AIと最適化何が違うんですか?」 ほぼ100%聞かれます (気持ちはわかるけど、逆に「なぜ人類はこの質問をしてしまうのか?」と聞きたい )
頑張ってひねり出した解答Top3 答1 答2 答3 「コンピュータが人の代わりに最高の答えを見つけてくれるという意味ではAI(人工知能) の一つと考えられますね! ハハハ」 「AIは大量のデータがないと使えませんが、数理最適化はルールが分かっていれば使え ます。」 「AIは今後どのようになるか
つまり予測分析であり、最適化はその後のどのように手を打 つかつまり計画のための分析という違いがあります」 ) …もう勘弁してくれ。 AIが何か知ってて聞いてるのか?(ワシも知らんけど)
そもそもAIって何ですか? 世界で最も納得がいくAI説明 https://twitter.com/matvelloso/status/1065778379612282885 機械学習とAIの違いは、 Pythonで書かれていたら機械学習で、 パワポで書かれていればAI!
少し真面目に、AI(えーあい)の定義 AIの明確な定義はなく、「お、知能っぽいゾ」という処理や技術を指す。 現在のトレンドは機械学習だが、それ以外の AIも存在する(というかそちらのほうが歴史が長い) AI ルールベース 機械学習 教師あり学習 ・ディープラーニング 教師なし学習
・クラスタリング ・GAN ・主成分分析 ・アソシエーション分析 強化学習 逆強化学習 必要なデータ量 多 小 ルール(モデル)の明瞭さ 不明瞭 明瞭 (なんか賢いプログラム)
AIと数理最適化は比べられるのか? AIや数理最適化の対象はデータであり、データ分析のツールとして比較できる。 *これは利用側からのカテゴライズです。ちゃんと勉強する人からすると「いやいや、データ分析のためのモノじゃないし…」はごもっともですがスルーしてください。 記述的分析:何が起きたか? 診断的分析:なぜ起きたのか? 予測的分析:何が起きるのか? 処方的分析:何をすべきか? 最適化 データ蓄積/集計 (RDB,NoSQL)
データ収集・可視化 (Message Queue,ETL) 予測 処方 AI
私の最終的な解答 AIという定義は曖昧であり、非常に広義のテクノロジーを含んでいます。 例えば、大量のデータから規則性を見つけ出し、その規則性の再現を行うディープライニングのようなタイプの AIや、ルールがわかっている事象に対してルールに基づき処理をするルールベースの処理を行うタイプの AI、 その他、処理対象のデータそのものの特性を利用してグループ分けする クラスタリングのようなタイプの AIなど があります。 実はクラスタリング等は最適化そのものです。予測分析のモデル生成は「あるモデルに基づいた出力誤差の最
小化」を目的関数とした最適化問題ですので、その処理過程に最適化を内包しています。 したがって、AIの一つ一つのテクノロジーと最適化についての議論はできますが、あいまいな ”AI”との比較につ いては一言ではご説明できません。 「AIは大量のデータがないと使えませんが、最適化はルールが分かっていれ ば使えます」と答えるわけです。 をあきらめて嚙み砕いて …
付録
付録1 https://www.soumu.go.jp/ict_skill/pdf/ict_skill_3_5.pdf
付録2 https://www.soumu.go.jp/ict_skill/pdf/ict_skill_3_5.pdf
AIと数理最適化は比べられるのか? AIや数理最適化の対象はデータであり、データ分析のツールとして比較できる。 データ源 ・デバイス(IoT/携帯) ・センサー ・キーボード入力 ・カメラ ・ネットワーク : データ収集/ETL
・Message Queue ・Data Streaming ・CEP(Complex Event Processing) データ蓄積/集計 ・RDB ・分散DB、NoSQL ・分散ストレージ 予測・分析 AI 計画、対策 最適化 出力(ディスプレイ、プリンタ、 IoTデバイス、ロボット、人間、パワーポイント ...) では、データの分析はどのような種類があるのか? *これは利用側からのカテゴライズです。ちゃんと勉強する人からすると「いやいや、データ分析のためのモノじゃないし…」はごもっともですがスルーしてください。
分析の種類 Descriptive Analytics 記述的分析 過去から現在、ど うだった Diagnostic Analytics 診断的分析 過去から現在、何が
起こった Predictive Analytics 予測的分析 現在から未来、どう なる Prescriptive Analytics 処方的分析 今とるべきアク ション つまり、AIと最適化では 使われるフェーズ(用途)が違う 分析の種類で分けてデータ処理過程を見ると …