Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Unsupervised Word Polysemy Quantification ...
Search
Taichi Aida
July 23, 2021
Research
0
97
文献紹介:Unsupervised Word Polysemy Quantification with Multiresolution Grids of Contextual Embeddings
Taichi Aida
July 23, 2021
Tweet
Share
More Decks by Taichi Aida
See All by Taichi Aida
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
0
150
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
270
YANS2024:目指せ国際会議!「ネットワーキングの極意(国際会議編)」
a1da4
0
180
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
320
新入生向けチュートリアル:文献のサーベイv2
a1da4
13
9.7k
文献紹介:Isotropic Representation Can Improve Zero-Shot Cross-Lingual Transfer on Multilingual Language Models
a1da4
0
160
文献紹介:WhitenedCSE: Whitening-based Contrastive Learning of Sentence Embeddings
a1da4
1
240
文献紹介:On the Transformation of Latent Space in Fine-Tuned NLP Models
a1da4
0
90
新入生向けチュートリアル:文献のサーベイ
a1da4
0
440
Other Decks in Research
See All in Research
Security, Privacy, and Trust in Generative AI
tsubasashi
0
110
地理空間情報と自然言語処理:「地球の歩き方旅行記データセット」の高付加価値化を通じて
hiroki13
1
230
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
120
資産間の相関関係を頑健に評価する指標を用いたファクターアローケーション戦略の構築
nomamist
0
190
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
370
2025年度 生成AIの使い方/接し方
hkefka385
0
480
ラムダ計算の拡張に基づく 音楽プログラミング言語mimium とそのVMの実装
tomoyanonymous
0
440
Mathematics in the Age of AI and the 4 Generation University
hachama
0
140
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
510
[論文紹介] iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
shiba4839
0
130
CARMUI-NET:自動運転車遠隔監視のためのバーチャル都市プラットフォームにおける通信品質変動機能の開発と評価 / UBI85
yumulab
0
160
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
280
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
298
20k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
104
19k
Site-Speed That Sticks
csswizardry
5
500
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
Writing Fast Ruby
sferik
628
61k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
9
760
Building Applications with DynamoDB
mza
94
6.3k
Why Our Code Smells
bkeepers
PRO
336
57k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
How GitHub (no longer) Works
holman
314
140k
Speed Design
sergeychernyshev
29
900
Transcript
Unsupervised Word Polysemy Quantification with Multiresolution Grids of Contextual Embeddings
Christos Xypolopoulos, Antoine Tixier, Michalis Vazirgiannis EACL2021 論文紹介
導入 - 単語の多義語の度合いを予測する手法を提案 - 単語の順位付けタスクで6種類の評価指標におい て6種類の人手セットとの相関を示した 2
手法 - 仮定:文脈あり単語ベクトルが空間を占める大き さは多義語の度合いを示す - 手法: 1. D次元に圧縮して格子状に線を引く 2. 単語ごとに格子を占める比率を計算
3. 多義語の度合いを示すスコアを計算 3 多義語の度合い word 1 > word 2
手法 1. D次元に圧縮し、格子状に線を引く 4
手法 2. 単語ごとに格子を占める比率を計算 5 word 1, l = 1 の場合:
手法 2. 単語ごとに格子を占める比率を計算 6 word 1, l = 2 の場合:
word 1, l = 3 の場合:
手法 3. 多義語の度合いを示すスコアを計算 7 格子が粗くなるほどペナルティを与える
実験:多義語の度合いの順位付け - タスク:対象単語について多義語の度合いをラン キング - データ:English Wikipedia dump - 評価対象の単語選択
- English Wikipedia で頻度の高い上位2000単語を選択 - 3000文以上ある単語(2000→1822単語)を残す 8
実験:多義語の度合いの順位付け - 比較手法(Ground Truth) - WordNet:synset 数を多義語の度合いとする - WordNet-Reduced:WordNet の
synset 数を少なくした もの。synset 数を多義語の度合いとする - WordNet-Domains:WordNet に自動でドメインのラベル を割り振ったもの。ドメイン数が多義語の度合い 9
実験:多義語の度合いの順位付け - 比較手法(Ground Truth) - OntoNotes:様々なメディアのデータから構築。WordNet をまとめた inventory 数が多義語の度合い -
Oxford:Oxford Dictionary にある意味の数を数える - Wikipedia:「曖昧さ回避」にあるカテゴリの数を多義語の 度合いとした - 比較手法(Baseline) - frequency:高頻度ほど多義語 - random:対数正規分布に従いランダムに並べ替える 10
実験:多義語の度合いの順位付け - 提案手法 - 事前訓練済み ELMo の最終層から単語ベクトルを獲得 - D:PCA でベクトルの次元を圧縮(1024→2~20)
- 格子の線の数 L:2~19 11
実験:多義語の度合いの順位付け - 評価指標:6種類の指標で評価 - cosine similarity - Spearman’s rho -
Kendall’s tau - precision@k - Normalized Discounted Gain (NDCG): - Rank Biased Overlap (RBO): 12
結果:多義語の度合いの順位付け - Ground Truth(cos, NDCG は特に Wiki)との相 関が高く、2つの baseline も超えている
- その他の指標で評価した場合も同様 13
議論:パラメータ(縦軸:線の数 L, 横軸: 圧縮後の次元 D) - D=2~4, L=3,4~8 くらいで良い性能になる 14
線の数 L 圧縮後の次元 D
応用:異なる語義の抽出 - 同じ単語でも異なる格子のマスから取り出せば、 異なる語義の文を抽出できる - count:固有名詞, 番号, 数え上げ - live:住む,
ライブ - bank:銀行, 土手 15
結論 - 圧縮したベクトル空間に線を引いて、格子を占め る比率から単語の多義語の度合いを計算 - 単語の順位づけタスクで人手との相関を示す (クラスタリングと比較して欲しい) 16
手法:アイデア - 画像処理における pyramid matching と同じ 17 Beyond Bags of
Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. (Lazebnik+2006)
vs. クラスタリング - 文脈あり単語ベクトルも一様ではない - クラスタリングは空間に対して均等に分割をせず (密度ベース)、外れ値のクラスタも - クラスタ数=多義語の度合い は信頼できない
18 How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings (Ethayarajh2019)
実験:多義語の度合いの順位付け - 対象の1822単語のうち、Ground Truth で使えた 単語数 19
議論:単語の語義ごとに 意味の近い単語を抽出 - 単語の各語義が所属するマスの中で高頻度の単 語を取り出す - metal:鉱物, オリンピック, 音楽 20