Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年度秋学期 統計学 第13回 不確かな測定の不確かさを測る - 不偏分散とt分布 (2...
Search
Akira Asano
PRO
December 10, 2024
Education
0
27
2024年度秋学期 統計学 第13回 不確かな測定の不確かさを測る - 不偏分散とt分布 (2024. 12. 18)
関西大学総合情報学部 統計学(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2024a/STAT/
Akira Asano
PRO
December 10, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2024年度秋学期 画像情報処理 第11回 逆投影法による再構成 (2024. 12. 13)
akiraasano
PRO
0
16
2024年度秋学期 統計学 第12回 分布の平均を推測する - 区間推定 (2024. 12. 11)
akiraasano
PRO
0
40
2024年度秋学期 統計学 第11回 分布の「型」を考える - 確率分布モデルと正規分布 (2024. 12. 4)
akiraasano
PRO
0
50
2024年度秋学期 画像情報処理 第10回 Radon変換と投影切断面定理 (2024. 12. 6)
akiraasano
PRO
0
26
2024年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2024. 11. 29)
akiraasano
PRO
0
25
2024年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2024. 11. 29)
akiraasano
PRO
0
27
2024年度秋学期 統計学 第9回 確からしさを記述する ― 確率 (2024. 11. 27)
akiraasano
PRO
0
57
2024年度秋学期 統計学 第10回 分布の推測とは - 標本調査,度数分布と確率分布 (2024. 11. 27)
akiraasano
PRO
0
41
2024年度秋学期 統計学 第8回 第1部の演習 (2024. 11. 6)
akiraasano
PRO
0
62
Other Decks in Education
See All in Education
1113
cbtlibrary
0
270
勉強したらどうなるの?
mineo_matsuya
10
6.8k
H5P-työkalut
matleenalaakso
4
36k
Stratégie de marketing digital - les fondamentaux
martine
0
140
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
720
開発終了後こそ成長のチャンス!プロダクト運用を見送った先のアクションプラン
ohmori_yusuke
2
190
Adobe Analytics入門講座【株式会社ニジボックス】
nbkouhou
0
23k
Utiliser Linkedin pour améliorer son personal branding
martine
0
100
Algo de fontes de alimentación
irocho
1
440
オープンソース防災教育ARアプリの開発と地域防災での活用
nro2daisuke
0
200
自分にあった読書方法を探索するワークショップ / Reading Catalog Workshop
aki_moon
0
220
BrightonSEO, San Diego, CA 2024
mchowning
0
100
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
Agile that works and the tools we love
rasmusluckow
328
21k
Docker and Python
trallard
42
3.1k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Building Your Own Lightsaber
phodgson
103
6.1k
A Tale of Four Properties
chriscoyier
157
23k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Transcript
関西大学総合情報学部 浅野 晃 統計学 2024年度秋学期 第13回 不確かな測定の不確かさを測る ― 不偏分散とt分布
ちょっと(ほんのちょっと) 前回までの復習
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 3 例題 標本 をとりだす サイズ X1 ,
X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわかっているものとする σ2 (説明の都合です) 標本平均 ¯ X
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 区間推定の考え方 4 数値をいくつか抽出して標本平均 標本平均にすることで ばらつきが小さくなる 母平均(実際にはわからない) のまわりにばらついている 標本平均の期待値
=母平均 標本平均の分散 =母分散÷標本サイズ X
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 区間推定の考え方 5 標本平均の左右に区間をつける 区間は母平均を 母平均 どの回の区間が 母平均を含むか・含まないかは わからないが
確率95%で母平均を含むように 区間の幅を設定できる X 含む 含む 含まない 含む (実際にはわからない) 標本平均はばらついているが,前後に区間をつければ,母平均はたいてい その区間に入っているようにできる
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 信頼区間 6 区間は母平均を 母平均 X 含むだろう 含む 含ま
ない 含む (実際にはわからない) 95%という大きな確率で 母平均を含むように設定した区間だから, その1回でも含むと信じる 母平均の [信頼係数]95%の [信頼区間] という ([95%信頼区間])
不偏分散💡💡
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 8 例題 標本 をとりだす サイズ X1 ,
X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわかっているものとする σ2 (説明の都合です) 標本平均 ¯ X
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母分散は,ふつうはわからない 9 母集団全体は調べていないし,母平均もわからない (わからないから,いま推定しようとしている)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母分散は,ふつうはわからない 9 それなのに,母分散がわかるはずがない 母集団全体は調べていないし,母平均もわからない (わからないから,いま推定しようとしている)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母分散は,ふつうはわからない 9 それなのに,母分散がわかるはずがない 母集団全体は調べていないし,母平均もわからない (わからないから,いま推定しようとしている) 母分散の「代用品」を,標本を使って計算できないか。
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 分散=(偏差)2の平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 分散=(偏差)2の平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 分散=(偏差)2の平均 (データの各数値)ー(データの平均)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均) データ: 標本 , ...
X1 Xn
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均) データ: 標本 , ...
X1 Xn データの平均:
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均) データ: 標本 , ...
X1 Xn データの平均: 本当は母平均だが,
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均) データ: 標本 , ...
X1 Xn わからないので標本平均 で代用 ¯ X データの平均: 本当は母平均だが,
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本を使った分散 S2 = 1 n (X1
− ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本を使った分散 S2 = 1 n (X1
− ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本サイズで割る 標本を使った分散 S2 = 1 n
(X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本サイズで割る 標本を使った分散 S2 = 1 n
(X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 分散=(偏差)2の平均 だから当然だけど…
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本サイズで割る 標本を使った分散 S2 = 1 n
(X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 分散=(偏差)2の平均 だから当然だけど… 本当にこれでいいの?
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 X1
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 X1 X2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 X1 X2 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 X1 X2 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 X1 母平均とのへだたり(偏差) X2 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X2 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X2 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X2 標本平均とのへだたり 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X2 標本平均とのへだたり 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X1 X2 標本平均とのへだたり 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 標本平均とのへだたり 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 標本平均とのへだたり 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X1 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 ¯ X 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 ¯ X 母平均
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 ¯ X 母平均 母平均はわからないから, が 偏った標本かどうかはわからないが, X1 , X2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2 標本は
X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 ¯ X 標本平均とのへだたりのほう がたいてい小さい 母平均 母平均はわからないから, が 偏った標本かどうかはわからないが, X1 , X2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 ¯ X
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 これなら 「標本平均との隔たり」と 「母平均との隔たり」は かわらない
¯ X
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 これなら 「標本平均との隔たり」と 「母平均との隔たり」は かわらない
¯ X
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 これなら 「標本平均との隔たり」と 「母平均との隔たり」は かわらない
¯ X ¯ X
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 これなら 「標本平均との隔たり」と 「母平均との隔たり」は かわらない
¯ X こんなふうに偏っていると 「標本平均との隔たり」 のほうが小さい ¯ X
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 不偏分散 14 母平均との隔たりよりも 標本平均との隔たりのほうが たいてい小さい 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 不偏分散 14 母平均との隔たりよりも 標本平均との隔たりのほうが たいてい小さい 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる では,計算のときに少し大きめにしておけば?
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n −
1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n −
1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n −
1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 (標本サイズ - 1)で割る
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n −
1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 (標本サイズ - 1)で割る これを不偏分散(不偏標本分散)といい, 母分散の代用に用いる
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n −
1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 (標本サイズ - 1)で割る これを不偏分散(不偏標本分散)といい, 母分散の代用に用いる 「不偏」とは?
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「不偏」とは? 16 計算のときに少し大きめにすると? 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「不偏」とは? 16 計算のときに少し大きめにすると? 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる 母分散と一致するわけではないが 母分散より大きくも小さくも平等にはずれる
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「不偏」とは? 16 計算のときに少し大きめにすると? 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる 母分散と一致するわけではないが 母分散より大きくも小さくも平等にはずれる 「不偏」とは「えこひいきしない」こと
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本サイズ=2のときに,式で書いてみると 17 標本サイズ=2のとき,標本を ,標本平均を とすると 不偏分散 は X1
, X2 ¯ X s2 s2 = 1 2 − 1 (X1 − ¯ X)2 + (X2 − ¯ X)2 {}内は,2つの「へだたり」の2乗の和? を代入すると ¯ X = X1 + X2 2 s2 = 1 2 − 1 (X1 − X1 + X2 2 )2 + (X2 − X1 + X2 2 )2 = 1 2 − 1 X1 − X2 2 2 + X2 − X1 2 2 = 1 2 − 1 (X1 − X2)2 2 「へだたり」は,ひとつしかない だから,2で割らずに1で割る
不偏分散を用いた区間推定💡💡
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 19 前回の例題 ある試験の点数の分布は正規分布であるとします。 この試験の受験者から,10人からなる標本を無作為抽出して, この人たちの点数を平均したところ50点でした。 この試験の受験者全体の標準偏差が5点であるとわかっている とき,受験者全体の平均点の95%信頼区間を求めてください。
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 20 例題 標本 をとりだす サイズ X1 ,
X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわかっているものとする σ2 (説明の都合です) 標本平均 ¯ X
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 21 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2) 標本平均は,やはり正規分布にしたがうが,
分散が になる 1/n 正規分布 N(μ, σ2/n) [性質2]
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 22 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2) 標本平均は,やはり正規分布にしたがうが,分散が
になる 1/n 正規分布 N(μ, σ2/n) [性質2] 正規分布の[性質1]により ¯ X Z = ¯ X − µ σ2/n は標準正規分布にしたがう N(0,1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 22 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2) 標本平均は,やはり正規分布にしたがうが,分散が
になる 1/n 正規分布 N(μ, σ2/n) [性質2] 正規分布の[性質1]により ¯ X Z = ¯ X − µ σ2/n は標準正規分布にしたがう N(0,1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 22 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2) 標本平均は,やはり正規分布にしたがうが,分散が
になる 1/n 正規分布 N(μ, σ2/n) [性質2] 正規分布の[性質1]により ¯ X Z = ¯ X − µ σ2/n は標準正規分布にしたがう N(0,1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 22 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2) 標本平均は,やはり正規分布にしたがうが,分散が
になる 1/n 正規分布 N(μ, σ2/n) [性質2] 正規分布の[性質1]により ¯ X Z = ¯ X − µ σ2/n は標準正規分布にしたがう N(0,1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X − µ
σ2/n は標準正規分布にしたがう N(0,1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X − µ
σ2/n は標準正規分布にしたがう N(0,1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X − µ
σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X − µ
σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X − µ
σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する t = ¯ X − µ s2/n
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X − µ
σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する t = ¯ X − µ s2/n
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X − µ
σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する t = ¯ X − µ s2/n 不偏分散
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X − µ
σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する t = ¯ X − µ s2/n 不偏分散 は何分布にしたがう? t
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布 24 は t = ¯ X −
µ s2/n t統計量
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布 24 は t = ¯ X −
µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布 24 は t(n − 1) t =
¯ X − µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布 24 は t(n − 1) t =
¯ X − µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量 (「スチューデントのt分布」という)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布 24 は t(n − 1) t =
¯ X − µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量 (「スチューデントのt分布」という)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布 24 は t(n − 1) t =
¯ X − µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量 (「スチューデントのt分布」という) 発見者ウィリアム・ゴセットのペンネーム
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布(母分散不明)の場合の区間推定 25 テキストの例題 ある試験の点数の分布は正規分布であるとします。 この試験の受験者から,10人からなる標本を無作為抽出して, この人たちの点数を平均したところ50点でした。 この10人の不偏分散が52点であるとき,受験者全体の平均点 の95%信頼区間を求めてください。
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布(母分散不明)の場合の区間推定 25 テキストの例題 ある試験の点数の分布は正規分布であるとします。 この試験の受験者から,10人からなる標本を無作為抽出して, この人たちの点数を平均したところ50点でした。 この10人の不偏分散が52点であるとき,受験者全体の平均点 の95%信頼区間を求めてください。
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布(母分散不明)の場合の区間推定 25 テキストの例題 ある試験の点数の分布は正規分布であるとします。 この試験の受験者から,10人からなる標本を無作為抽出して, この人たちの点数を平均したところ50点でした。 この10人の不偏分散が52点であるとき,受験者全体の平均点 の95%信頼区間を求めてください。
前回は 「受験者全体の標準偏差が5点であるとわかっている」
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 26 例題 標本 をとりだす サイズ X1 ,
X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわか σ2 標本平均 ¯ X らないので,
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 26 例題 標本 をとりだす サイズ X1 ,
X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわか σ2 標本平均 ¯ X らないので, 不偏分散 で代用 s2
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 は自由度 の t分布にしたがう (n
− 1) の 確率密度関数 t(n − 1) t = ¯ X − µ s2/n t(n − 1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 は自由度 の t分布にしたがう (n
− 1) の 確率密度関数 t(n − 1) t = ¯ X − µ s2/n t(n − 1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 この区間に入っている確率=95%とすると は自由度 の t分布にしたがう
(n − 1) の 確率密度関数 t(n − 1) が t = ¯ X − µ s2/n t = ¯ X − µ s2/n t(n − 1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 この区間に入っている確率=95%とすると は自由度 の t分布にしたがう
(n − 1) の 確率密度関数 t(n − 1) が 面積=95% t = ¯ X − µ s2/n t = ¯ X − µ s2/n t(n − 1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 この区間に入っている確率=95%とすると は自由度 の t分布にしたがう
(n − 1) の 確率密度関数 t(n − 1) が 面積=95% 境界の値はいくら? t = ¯ X − µ s2/n t = ¯ X − µ s2/n t(n − 1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t 0 t分布を用いた区間推定 28 面積=95% 面積=2.5%
(左右で5%)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t 0 t分布を用いた区間推定 28 面積=95% 面積=2.5%
(左右で5%) 境界の値は自由度によってちがうので
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t 0 t分布を用いた区間推定 28 面積=95% 面積=2.5%
(左右で5%) 境界の値は自由度によってちがうので t0.025 (n − 1) としておく
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t 0 t分布を用いた区間推定 28 面積=95% 面積=2.5%
(左右で5%) 境界の値は自由度によってちがうので t0.025 (n − 1) としておく [上側2.5%点]
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 29 この区間に入っている確率=95% が 面積=95% t
= ¯ X − µ s2/n t(n − 1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 29 この区間に入っている確率=95% が 面積=95% t
= ¯ X − µ s2/n t(n − 1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 29 この区間に入っている確率=95% が 面積=95% t
= ¯ X − µ s2/n t0.025 (n − 1) t(n − 1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 29 この区間に入っている確率=95% が 面積=95% t
= ¯ X − µ s2/n t0.025 (n − 1) −t0.025 (n − 1) t(n − 1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 が と の間に入っている確率が95% −t0.025 (n −
1) t0.025 (n − 1) t = ¯ X − µ s2/n
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 式で書くと が と の間に入っている確率が95% −t0.025 (n
− 1) t0.025 (n − 1) t = ¯ X − µ s2/n
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 式で書くと が と の間に入っている確率が95% −t0.025 (n
− 1) t0.025 (n − 1) t = ¯ X − µ s2/n P −t0.025(n − 1) ¯ X − µ s2/n t0.025(n − 1) = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 式で書くと が と の間に入っている確率が95% −t0.025 (n
− 1) t0.025 (n − 1) の式に直すと μ t = ¯ X − µ s2/n P −t0.025(n − 1) ¯ X − µ s2/n t0.025(n − 1) = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 式で書くと が と の間に入っている確率が95% −t0.025 (n
− 1) t0.025 (n − 1) の式に直すと μ t = ¯ X − µ s2/n P −t0.025(n − 1) ¯ X − µ s2/n t0.025(n − 1) = 0.95 P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 P ¯ X − t0.025(n −
1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ P ¯ X
− t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限 μ
P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限 μ
例題では P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限 μ
例題では 標本平均=50 P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限 μ
例題では 標本平均=50 不偏分散=25 P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限 μ
例題では 標本平均=50 不偏分散=25 標本サイズ=10 P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限 μ
例題では 標本平均=50 不偏分散=25 標本サイズ=10 上側2.5%点 は? t0.025 (n − 1) P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% t0.025 (n −
1)
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% t0.025 (n −
1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% t0.025 (n −
1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% パーセントの値 t0.025 (n
− 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% パーセントの値 例題では n
− 1 = 9 t0.025 (n − 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% パーセントの値 例題では n
− 1 = 9 0.025 t0.025 (n − 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% パーセントの値 例題では n
− 1 = 9 0.025 t0.025 (9) = 2.262 t0.025 (n − 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 P ¯ X − t0.025(n −
1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では P ¯ X − t0.025(n
− 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 P ¯ X −
t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 P ¯ X
− t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 標本サイズ=10 P ¯
X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 標本サイズ=10 P ¯
X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 標本サイズ=10 P ¯
X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95 t0.025 (10 − 1) = 2.262
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 標本サイズ=10 P ¯
X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95 t0.025 (10 − 1) = 2.262 計算すると,例題の答は 「46.4以上53.6以下」( [46.4, 53.6] ) の95% 信頼区間の下限 μ の95% 信頼区間の上限 μ
34 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 前回の例題と比較 34 不偏分散は,母分散の推定量なので,不確か どちらも 標本平均=50 不偏分散=25 のとき 標本サイズ=10 母分散=25 のとき
母平均の95%信頼区間は [46.9, 53.1] [46.4, 53.6] →信頼区間が広い