Upgrade to Pro — share decks privately, control downloads, hide ads and more …

La 5G, 40' pour (presque) tout comprendre

La 5G, 40' pour (presque) tout comprendre

La 5G arrive à grands pas et de nombreux médias et industriels commencent à en parler. Ce fut notamment le cas lors du Mobile World Congress (MWC) qui s'est tenu à Barcelone en février dernier.

Alors que le processus de standardisation n'est pas encore tout à fait finalisé, certains d'entre vous se posent sûrement de nombreuses questions : qui sont les acteurs ? quand ? que cela va-t-il changer ? quelles sont les technologies qui se cachent derrière le terme "5G" ?

Au cours de cette présentation, j'essayerais de répondre à ces questions. Nous parlerons notamment de 3GPP, de mmWave, NFV, 5G-New Radio, Massive IoT, LPWAN, ou de beamforming.

83124b745752d1a1b0ca2eee1af0bd48?s=128

Alexis DUQUE

May 16, 2019
Tweet

Transcript

  1. 5G 40’ POUR (PRESQUE) TOUT COMPRENDRE

  2. 2 HELLO! I am Alexis Duque R&D leader at Rtone

    PhD @alexis0duque alexisd@rtone.fr rtone.fr
  3. 3GPP IoT Edge 4 5G Beamforming Fog low latency Massive

    MIMO mmWave
  4. DISCLAIMERS 5 Mobile generations do not reflect technological evolution, marketing

    terms Mobile communications generations result from many evolutions and thus are not perfectly distinct Commercial, economical, and financial issues greatly influence the mobile technologies development
  5. WHO? 6 3GPP: groups of telecommunications standards associations, Europe, Japan,

    USA ⇒ defines the standard NGMN: leading network operators organization, Verizon, O2, Telefonica, Orange, etc. 5GPPP: European initiative with industrial and institutional partners, Nokia, Ericsson, ...
  6. 2. Before 5G ...

  7. 1G 8

  8. 2G 9

  9. 3G 11

  10. 4G 14

  11. 4G 15 Long Term Evolution (LTE), releases 8 and 9

    : ▸ Bandwidth ↗ to 20 MHz (3G was 5 MHz) ▸ OFDMA and SC-FDMA - MIMO 4x4 ▸ Throughput: DL 300 Mbits/s, UL 75 Mbits/s LTE advanced, releases 10 to 14 : ▸ Carrier aggregation : use of non-contiguous spectrum up to 100 MHz ▸ MIMO 8x8
  12. 5G 17 ?

  13. BENEFITS & GOALS 18 Enhanced Mobile Broadband (eMBB) Massive Machine-Type

    Communications (MMTC) Ultra Reliable and Low Latency Communications (URLL)
  14. BENEFITS & GOALS 19

  15. PERFORMANCE INDICATORS 20 DL: 100Mbps UL: 50Mbps x3 500 km/h

    1M device/km2 ~10ms 100 Mbit/m2 100x
  16. STANDARDIZATION ROADMAP 22 2012 2014 2015 2016 2017 2018 2019

    2020 2000 2003 1985 … … … Year Deployment Of IMT-2020 DevelopmeDe velopmenntt OfOf Dev. of IMT-2020 Vision of IMT-2020 Vision of IMT-Adv Deployment of IMT-Adv Dev. of IMT-2000 Deployment Of IMT-2000 3G R16 R15 R14 5G 4G Dev. of IMT-Advanced Deployment of IMT-2020 9 years 15 years 5 years R13
  17. 2. HOW?

  18. 24 HOW? ▸ New Radio Spectrum ▸ New Radio Multiplexing

    Technologies ▸ New Efficient Spectrum Usage Techniques ▸ New Energy Saving Mechanisms ▸ Application Specific Improvements
  19. 25 NEW RADIO SPECTRUM Ref: 3GPP

  20. 26 NEW RADIO SPECTRUM

  21. ▸ Filtered Bank Multicarrier (FBMC) ▸ Pattern Division Multiple Access

    (PDMA) ▸ Low Density Spreading (LDS) ▸ Sparse Code Multiple Access (SCMA) ▸ Interleave-Division Multiple Access (IDMA) 27 NEW RADIO MULTIPLEXING TECHNOLOGIES ▸ Spectrum Filtered OFDM (f-OFDM) ▸ Non-Orthogonal Multiple Access (NOMA)
  22. 28 4G MULTIPLEXING TECHNOLOGIES OFDM

  23. 29 4G MULTIPLEXING TECHNOLOGIES Issues with OFDM ▸ Spectrum overflow

    -> Need guard bands ▸ Entire band should use the same subcarrier spacing ▸ Entire time should use the same symbol size and cyclic prefix ▸ All users should strictly time synchronize in the uplink
  24. 30 SPECTRUM FILTERED OFDM ▸ Band divided into multiple subbands

    ▸ Each subband may use different OFDM parameters optimized for the application: frequency spacing, cyclic prefix, … ▸ Each subband spectrum is filtered to avoid inter-subband interference ▸ Different users (subbands) do not need to be time synchronized
  25. 31 SPECTRUM FILTERED OFDM Time Frequency Subband 1 with spacing

    6 MHz Subband 1 with spacing 15 MHz OFDM 1 OFDM 2 OFDM 3 Filter Subband 1 with spacing 10 MHz Ref: P. Zhu, “5G Enabling Technologies,” PIMRC, Sep 2014, 20 slide
  26. NON-ORTHOGONAL MULTIPLE ACCESS 32 ▸ Users are distinguished by power

    levels ▸ Users with poor channel condition get higher power ▸ Users with higher power decode their signal treating others as noise ▸ Users with lower power subtract the higher powered signals before decoding
  27. 33 NON-ORTHOGONAL MULTIPLE ACCESS User 1 subtracts signal of user

    2 then decodes User 2 decodes its signal Considers user 1’s signal as noise Ref: G. Ding, et al, “Application of Non-orthogonal Multiple Access in LTE and 5G Networks”
  28. 34 NEW EFFICIENT SPECTRUM USAGE TECHNIQUES ▸ 3D Beamforming and

    Massive MIMO ▸ Distributed Antenna Systems (DAS) ▸ FDD-TDD Carrier Integration ▸ Simultaneous Transmission and Reception ▸ Dynamic TDD ▸ License Assisted Access (LAA) ▸ Multimode Base Stations ▸ Intelligent Multi-Mode RAT Selection ▸ Higher order modulations in small cells
  29. 36 MASSIVE MIMO Ref: https://futurenetworks.ieee.org/tech-focus/march-2017/massive-mimo-for-5g

  30. 37 BEAMFORMING Ref: G. Xu, et al, “Full-Dimension MIMO: Status

    and Challenges in Design and Implementation,” May 2014, http://www.ieee-ctw.org/2014/slides/session3/CTW_2014_Samsung_FD-MIMO.pdf
  31. 38 DISTRIBUTED ANTENNA SYSTEMS ▸ Multiple antennas connected via cable

    ▸ Used for indoor coverage ▸ RF signal might be converted to digital and transmitted over fiber optic cables and converted back to RF
  32. 40 MMWAVE Frequencies are 30-300 GHz Why? ▸ Frequency spectrum

    at this band still undeveloped widely, more BW is available. ▸ Efficient frequency reuse due to high attenuation. ▸ Inherent security and privacy because of narrow beamwidths and limited range. ▸ Small wavelengths → huge # of antenna elements (Massive MIMO).
  33. 41 MMWAVE

  34. ENERGY SAVING MECHANISMS

  35. 44 ENERGY SAVING MECHANISMS ▸ Discontinuous Transmission ▸ Antenna Muting

    ▸ Cell on/off switching ▸ Power Save Mode for IoT
  36. CAPEX/OPEX REDUCTION TECHNIQUES

  37. 48 SOFTWARE DEFINED NETWORKING Abstract the Hardware: No dependence on

    physical infrastructure. Software API. Programmable: Shift away from static manual operation to fully configurable and dynamic Centralized Control of Policies: Policy delegation and management
  38. 49 NETWORK FUNCTION VIRTUALIZATION Standard hardware is fast and cheap

    -> No specialized hardware Implement all functions in software Virtualize all functions -> Cloud -> Create capacity on demand
  39. 51 CLOUD RADIO ACCESS NETWORK Ref: https://www.fujitsu.com/downloads/TEL/fnc/whitepapers/CloudRANwp.pdf

  40. 53 4G LEGACY CORE NETWORK simplified RRH RRH RRH RRH

    eNodeB Core (EPC) PGW SGW MME Radio Access Network (RAN) Backhaul Fronthaul HSS DATA NET. SGW: Serving Gateway PGW: Packet data network Gateway HSS: Home Subscriber Server MME: Mobility Management Entity
  41. 54 5G WITH CONTROL/USER PLANE SEPARATION (CUPS) simplified RRH RRH

    RRH RRH gNodeB Core (EPC) PGW-C SGW-C MME Radio Access Network (RAN) Backhaul Fronthaul HSS DATA NET. PGW-U SGW-U SGW: Serving Gateway PGW: Packet data network Gateway HSS: Home Subscriber Server MME: Mobility Management Entity
  42. 55 NETWORK SLICING

  43. 56 MOBILE EDGE COMPUTING Computation needs to come to edge

    : router, mobile, IoT IoT Gateway, app specific computing Ref: ETSI, “Mobile Edge Computing A key technology towards 5Gementation,” May 2015
  44. 57 MACHINE LEARNING Network Parameters Optimization ▸ Cellular networks can

    be tuned with hundreds/thousands of parameters ▸ The interactions between these are difficult to model accurately (depends on interference, geography, user behavior…) ▸ Rely on the “generalization” feature of ML: ability to give a meaningful reply to an input that was not included in the training set
  45. APPLICATION SPECIFIC IMPROVEMENTS

  46. 59 LTE-M - CAT M1 LTE-M introduced Category 2 UE

    ▸ 1.4 MHz bandwidth vs 20 MHz for LTE ▸ 375 kbps DL - 300 kbps UL ▸ Suitable for TCP/TLS ▸ Voice Capabilities ▸ Milliseconds latency
  47. 60 NB-IOT - CAT NB1 Narrow Band IoT introduced Category-2

    UE: ▸ 200 kHz bandwidth ▸ 60 kbps DL - 30 kbps UL ▸ 23 dBm power (required to maintain the link budget) ▸ Frequency Hopping ▸ Longer Range than LTE-M Ref: https://arxiv.org/ftp/arxiv/papers/1606/1606.04171.pdf
  48. 61 NB-IOT - LTE-M Both support Power Saving Mode and

    eDRX 4.7 years on 2 AA batteries 10 years on 2 AA batteries
  49. 62 NB-IOT - LTE-M Both merged into 5G Standard

  50. 4. NEXT STEPS? 63

  51. A NEW SMARTPHONE? 64

  52. FRENCH ROADMAP 65 2019 • Release of 3,5 GHz &

    26 GHz frequency bands • Frequency attribution strategy definition • Frequency attribution auction open • 5G pilot projects and cities
  53. 66

  54. FRENCH ROADMAP 67 2020 ▸ Frequency attribution: decisions ▸ First

    5G services in ~ 1 city / EU country 2025 ▸ 5G available in metropolitan areas and along major transport axes
  55. 69 THANKS! Any questions? You can reach me at @alexis0duque

    alexisd@rtone.fr We are hiring talents!
  56. REFERENCES ARCEP : https://www.arcep.fr/la-regulation/grands-dossiers-reseaux-mobiles/la-5g.ht ml GSMA: https://www.gsma.com/spectrum/5g-spectrum-guide/ IEEE 5G Summit:

    http://www.5gsummit.org/index.htm 5G roadmap : an overview: https ://ec.europa.eu/digital-agenda/en/5g-international-cooperation. 5G-Now. Deliverable D3.2: 5g waveform candidate selection. Technical report, 5G Now (5th Generation Non-Orthogonal Waveforms for Asynchronous Signalling), 2015. N. Alliance. 5g white paper. Next Generation Mobile Networks, White paper, 2015. 70