Upgrade to Pro — share decks privately, control downloads, hide ads and more …

La 5G, 40' pour (presque) tout comprendre

La 5G, 40' pour (presque) tout comprendre

La 5G arrive à grands pas et de nombreux médias et industriels commencent à en parler. Ce fut notamment le cas lors du Mobile World Congress (MWC) qui s'est tenu à Barcelone en février dernier.

Alors que le processus de standardisation n'est pas encore tout à fait finalisé, certains d'entre vous se posent sûrement de nombreuses questions : qui sont les acteurs ? quand ? que cela va-t-il changer ? quelles sont les technologies qui se cachent derrière le terme "5G" ?

Au cours de cette présentation, j'essayerais de répondre à ces questions. Nous parlerons notamment de 3GPP, de mmWave, NFV, 5G-New Radio, Massive IoT, LPWAN, ou de beamforming.

Alexis DUQUE

May 16, 2019

More Decks by Alexis DUQUE

Other Decks in Technology


  1. DISCLAIMERS 5 Mobile generations do not reflect technological evolution, marketing

    terms Mobile communications generations result from many evolutions and thus are not perfectly distinct Commercial, economical, and financial issues greatly influence the mobile technologies development
  2. WHO? 6 3GPP: groups of telecommunications standards associations, Europe, Japan,

    USA ⇒ defines the standard NGMN: leading network operators organization, Verizon, O2, Telefonica, Orange, etc. 5GPPP: European initiative with industrial and institutional partners, Nokia, Ericsson, ...
  3. 4G 15 Long Term Evolution (LTE), releases 8 and 9

    : ▸ Bandwidth ↗ to 20 MHz (3G was 5 MHz) ▸ OFDMA and SC-FDMA - MIMO 4x4 ▸ Throughput: DL 300 Mbits/s, UL 75 Mbits/s LTE advanced, releases 10 to 14 : ▸ Carrier aggregation : use of non-contiguous spectrum up to 100 MHz ▸ MIMO 8x8
  4. BENEFITS & GOALS 18 Enhanced Mobile Broadband (eMBB) Massive Machine-Type

    Communications (MMTC) Ultra Reliable and Low Latency Communications (URLL)
  5. STANDARDIZATION ROADMAP 22 2012 2014 2015 2016 2017 2018 2019

    2020 2000 2003 1985 … … … Year Deployment Of IMT-2020 DevelopmeDe velopmenntt OfOf Dev. of IMT-2020 Vision of IMT-2020 Vision of IMT-Adv Deployment of IMT-Adv Dev. of IMT-2000 Deployment Of IMT-2000 3G R16 R15 R14 5G 4G Dev. of IMT-Advanced Deployment of IMT-2020 9 years 15 years 5 years R13
  6. 24 HOW? ▸ New Radio Spectrum ▸ New Radio Multiplexing

    Technologies ▸ New Efficient Spectrum Usage Techniques ▸ New Energy Saving Mechanisms ▸ Application Specific Improvements
  7. ▸ Filtered Bank Multicarrier (FBMC) ▸ Pattern Division Multiple Access

    (PDMA) ▸ Low Density Spreading (LDS) ▸ Sparse Code Multiple Access (SCMA) ▸ Interleave-Division Multiple Access (IDMA) 27 NEW RADIO MULTIPLEXING TECHNOLOGIES ▸ Spectrum Filtered OFDM (f-OFDM) ▸ Non-Orthogonal Multiple Access (NOMA)
  8. 29 4G MULTIPLEXING TECHNOLOGIES Issues with OFDM ▸ Spectrum overflow

    -> Need guard bands ▸ Entire band should use the same subcarrier spacing ▸ Entire time should use the same symbol size and cyclic prefix ▸ All users should strictly time synchronize in the uplink
  9. 30 SPECTRUM FILTERED OFDM ▸ Band divided into multiple subbands

    ▸ Each subband may use different OFDM parameters optimized for the application: frequency spacing, cyclic prefix, … ▸ Each subband spectrum is filtered to avoid inter-subband interference ▸ Different users (subbands) do not need to be time synchronized
  10. 31 SPECTRUM FILTERED OFDM Time Frequency Subband 1 with spacing

    6 MHz Subband 1 with spacing 15 MHz OFDM 1 OFDM 2 OFDM 3 Filter Subband 1 with spacing 10 MHz Ref: P. Zhu, “5G Enabling Technologies,” PIMRC, Sep 2014, 20 slide
  11. NON-ORTHOGONAL MULTIPLE ACCESS 32 ▸ Users are distinguished by power

    levels ▸ Users with poor channel condition get higher power ▸ Users with higher power decode their signal treating others as noise ▸ Users with lower power subtract the higher powered signals before decoding
  12. 33 NON-ORTHOGONAL MULTIPLE ACCESS User 1 subtracts signal of user

    2 then decodes User 2 decodes its signal Considers user 1’s signal as noise Ref: G. Ding, et al, “Application of Non-orthogonal Multiple Access in LTE and 5G Networks”

    Massive MIMO ▸ Distributed Antenna Systems (DAS) ▸ FDD-TDD Carrier Integration ▸ Simultaneous Transmission and Reception ▸ Dynamic TDD ▸ License Assisted Access (LAA) ▸ Multimode Base Stations ▸ Intelligent Multi-Mode RAT Selection ▸ Higher order modulations in small cells
  14. 37 BEAMFORMING Ref: G. Xu, et al, “Full-Dimension MIMO: Status

    and Challenges in Design and Implementation,” May 2014, http://www.ieee-ctw.org/2014/slides/session3/CTW_2014_Samsung_FD-MIMO.pdf
  15. 38 DISTRIBUTED ANTENNA SYSTEMS ▸ Multiple antennas connected via cable

    ▸ Used for indoor coverage ▸ RF signal might be converted to digital and transmitted over fiber optic cables and converted back to RF
  16. 40 MMWAVE Frequencies are 30-300 GHz Why? ▸ Frequency spectrum

    at this band still undeveloped widely, more BW is available. ▸ Efficient frequency reuse due to high attenuation. ▸ Inherent security and privacy because of narrow beamwidths and limited range. ▸ Small wavelengths → huge # of antenna elements (Massive MIMO).
  17. 44 ENERGY SAVING MECHANISMS ▸ Discontinuous Transmission ▸ Antenna Muting

    ▸ Cell on/off switching ▸ Power Save Mode for IoT
  18. 48 SOFTWARE DEFINED NETWORKING Abstract the Hardware: No dependence on

    physical infrastructure. Software API. Programmable: Shift away from static manual operation to fully configurable and dynamic Centralized Control of Policies: Policy delegation and management
  19. 49 NETWORK FUNCTION VIRTUALIZATION Standard hardware is fast and cheap

    -> No specialized hardware Implement all functions in software Virtualize all functions -> Cloud -> Create capacity on demand

    eNodeB Core (EPC) PGW SGW MME Radio Access Network (RAN) Backhaul Fronthaul HSS DATA NET. SGW: Serving Gateway PGW: Packet data network Gateway HSS: Home Subscriber Server MME: Mobility Management Entity

    RRH RRH gNodeB Core (EPC) PGW-C SGW-C MME Radio Access Network (RAN) Backhaul Fronthaul HSS DATA NET. PGW-U SGW-U SGW: Serving Gateway PGW: Packet data network Gateway HSS: Home Subscriber Server MME: Mobility Management Entity
  22. 56 MOBILE EDGE COMPUTING Computation needs to come to edge

    : router, mobile, IoT IoT Gateway, app specific computing Ref: ETSI, “Mobile Edge Computing A key technology towards 5Gementation,” May 2015
  23. 57 MACHINE LEARNING Network Parameters Optimization ▸ Cellular networks can

    be tuned with hundreds/thousands of parameters ▸ The interactions between these are difficult to model accurately (depends on interference, geography, user behavior…) ▸ Rely on the “generalization” feature of ML: ability to give a meaningful reply to an input that was not included in the training set
  24. 59 LTE-M - CAT M1 LTE-M introduced Category 2 UE

    ▸ 1.4 MHz bandwidth vs 20 MHz for LTE ▸ 375 kbps DL - 300 kbps UL ▸ Suitable for TCP/TLS ▸ Voice Capabilities ▸ Milliseconds latency
  25. 60 NB-IOT - CAT NB1 Narrow Band IoT introduced Category-2

    UE: ▸ 200 kHz bandwidth ▸ 60 kbps DL - 30 kbps UL ▸ 23 dBm power (required to maintain the link budget) ▸ Frequency Hopping ▸ Longer Range than LTE-M Ref: https://arxiv.org/ftp/arxiv/papers/1606/1606.04171.pdf
  26. 61 NB-IOT - LTE-M Both support Power Saving Mode and

    eDRX 4.7 years on 2 AA batteries 10 years on 2 AA batteries
  27. FRENCH ROADMAP 65 2019 • Release of 3,5 GHz &

    26 GHz frequency bands • Frequency attribution strategy definition • Frequency attribution auction open • 5G pilot projects and cities
  28. 66

  29. FRENCH ROADMAP 67 2020 ▸ Frequency attribution: decisions ▸ First

    5G services in ~ 1 city / EU country 2025 ▸ 5G available in metropolitan areas and along major transport axes
  30. REFERENCES ARCEP : https://www.arcep.fr/la-regulation/grands-dossiers-reseaux-mobiles/la-5g.ht ml GSMA: https://www.gsma.com/spectrum/5g-spectrum-guide/ IEEE 5G Summit:

    http://www.5gsummit.org/index.htm 5G roadmap : an overview: https ://ec.europa.eu/digital-agenda/en/5g-international-cooperation. 5G-Now. Deliverable D3.2: 5g waveform candidate selection. Technical report, 5G Now (5th Generation Non-Orthogonal Waveforms for Asynchronous Signalling), 2015. N. Alliance. 5g white paper. Next Generation Mobile Networks, White paper, 2015. 70