Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangChainでデータ分析エージェントを作ってみる
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
熊懐葵
September 29, 2024
Technology
0
340
LangChainでデータ分析エージェントを作ってみる
機械学習の社会実装勉強会 第39回 (
https://machine-learning-workshop.connpass.com/event/328440/
) の発表資料です。
熊懐葵
September 29, 2024
Tweet
Share
More Decks by 熊懐葵
See All by 熊懐葵
AI時代のインターン研修再設計 コーディング力から課題創出・業務遂行力へ
aoikumadaki
0
90
Claude Codeで進めるAWSリソースのTerraform移行
aoikumadaki
0
77
n8nで定期成果報告の資料づくりを自動化する
aoikumadaki
0
190
LangGraphとFlaskを用いた社内資料検索ボットの実装④GithubRetriever構築編
aoikumadaki
0
88
LangGraphとFlaskを用いた社内資料検索ボットの実装③アプリケーション構築編
aoikumadaki
0
140
LangGraphとFlaskを用いた社内資料検索ボットの実装②Retriever構築編
aoikumadaki
0
230
LangGraphとFlaskを用いた社内資料検索ボットの実装①AIエージェント構築編
aoikumadaki
0
450
StreamlitとLangChainを使った表画像OCRアプリの実装
aoikumadaki
3
860
AWS LambdaとLangSmithを使った社内レポート添削システムMinervaの実装
aoikumadaki
0
370
Other Decks in Technology
See All in Technology
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
170
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.6k
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
210
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
150
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
580
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
770
pool.ntp.orgに ⾃宅サーバーで 参加してみたら...
tanyorg
0
1.4k
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
480
Red Hat OpenStack Services on OpenShift
tamemiya
0
140
Featured
See All Featured
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
The Curse of the Amulet
leimatthew05
1
8.7k
Site-Speed That Sticks
csswizardry
13
1.1k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
190
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
650
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
How to Talk to Developers About Accessibility
jct
2
140
Build your cross-platform service in a week with App Engine
jlugia
234
18k
GitHub's CSS Performance
jonrohan
1032
470k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
70
Thoughts on Productivity
jonyablonski
74
5k
Transcript
LangChainで データ分析エージェントを作ってみる 2024/09/29 機械学習の社会実装勉強会 第39回 熊懐 葵
目次 • 背景: 商圏分析 • データ分析エージェント • イメージ • 実装(LangChain
> Pandas Dataframe) • 性能調査(サンプルデータ・実データ) • 処理プロセスの調査
背景: 商圏分析 商圏分析 • 商圏: 特定の店舗が顧客に影響を及ぼすエリア(コンビニ…半径500m以内→徒歩10分) • 商圏の人の属性や人流・競合の立地などから、新店舗の立地選定やマーケティング戦略に活用 既存サービスの課題 •
使用料金の高さ・機能の複雑さ モチベーション • 使いやすい商圏分析ツールを作れないか • LLMを用いたデータ分析エージェントを作りたい
既存サービスの例: MarketAnalyzer https://www.giken.co.jp/products/marketanalyzer/case/ より 多機能→複雑
データ分析エージェントのイメージ 駅別乗降客数データ + 「人がよく乗降する駅は?」 実行結果から回答を出力「〇〇駅で△人です」 コード類やソフトの複雑な操作などせずに データ分析をすることができる 質問とデータから、適切な データ分析プログラムを生成 ↓
プログラムを実行 ユーザー エージェント
LangChainライブラリを用いて実装した 実行例
データ分析エージェントの実装 • OpenAI API Key • LangChain v0.3 create_pandas_dataframe_agent 必要なもの
• データ読み込み • エージェント作成 • エージェント実行 処理内容 ▼ データの読み込み・エージェント作成 (公式) < エージェントが自動で コードを生成しデータを操作する ので、扱いには注意
データ分析エージェントの実装 • OpenAI API Key • LangChain v0.3 create_pandas_dataframe_agent 必要なもの
• データ読み込み • エージェント作成 • エージェント実行 処理内容 ▼ エージェント実行 終了と打つと会話が終了 会話履歴を保存
性能調査: サンプルデータ ▼ 従業員データ(Chat GPTが生成) ▼ 実行結果1 ID 名前 年齢
部門 給料
性能調査: サンプルデータ ※0.6895282023 ▼ 実行結果2 ▼ 従業員データ(Chat GPTが生成) ID 名前
年齢 部門 給料
性能調査: 実データ ▼ 大分県の中心部の駅乗降客数データ 国土数値情報ダウンロードサイト https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-S12-v3_1.html 駅名、駅コード、運営会社、路線名、 2011~2022年の乗降客数(年度別) …その他(35カラム)
性能調査: 実データ データ通りの回答ではある ▼ 実行結果 国土数値情報ダウンロードサイト https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-S12-v3_1.html ▼ データ(一部表示)
性能調査: 実データ ▼ 実行結果 国土数値情報ダウンロードサイト https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-S12-v3_1.html ▼ データ(一部表示) ←増加量(スプレッドシートで検算)
v0.3(9月中旬~)で性能が向上している? ▼ LangChain v0.2での実行結果 元データと異なる数値 v0.3 ではマルチモーダル機能が強化される予定らしい 図の出力機能などでもっと便利になりそう
処理プロセスの調査 ▼ verbose=Trueにする
処理プロセスの調査 ▼ 実行結果 分析に必要なコードを生成し、実行している →数値部分が決定的な出力になる
まとめ 背景 • 商圏分析ツールの高価さ・使いにくさ • LLMを用いて、安価で使いやすいデータ分析ツールは作れないか 今回 • LangChain Toolkitsのcreate_pandas_dataframe_agentを使用
• 基本的なデータ分析の性能を確認 今後 • 性能の限界→是非試してみてください!(※性能向上も速い) • マルチモーダル性能の強化に期待