Carrie J. Cai and Emily Reif and Narayan Hegde and Jason Hipp and Been Kim and Daniel Smilkov and Martin Wattenberg and Fernanda Viegas and Greg S. Corrado and Martin C. Stumpe and Michael Terry
User Interface and System Design 5. Tool Evaluation Study 6. User Study 7. User Study Results 8. Tool Use and Navigation Patterns 9. Decision Making and Coping With Black-box ML 10. Discussion 11. Conclusion TOC 7
User Interface and System Design 5. Tool Evaluation Study 6. User Study 7. User Study Results 8. Tool Use and Navigation Patterns 9. Decision Making and Coping With Black-box ML 10. Discussion 11. Conclusion TOC 11
User Interface and System Design 5. Tool Evaluation Study 6. User Study 7. User Study Results 8. Tool Use and Navigation Patterns 9. Decision Making and Coping With Black-box ML 10. Discussion 11. Conclusion TOC 13
Interface and System Design <- 5. Tool Evaluation Study 6. User Study 7. User Study Results 8. Tool Use and Navigation Patterns 9. Decision Making and Coping With Black-box ML 10. Discussion 11. Conclusion TOC 17
Interface and System Design 5. Tool Evaluation Study <- 6. User Study 7. User Study Results 8. Tool Use and Navigation Patterns 9. Decision Making and Coping With Black-box ML 10. Discussion 11. Conclusion TOC 28
Interface and System Design 5. Tool Evaluation Study 6. User Study <- 7. User Study Results <- 8. Tool Use and Navigation Patterns 9. Decision Making and Coping With Black-box ML 10. Discussion 11. Conclusion TOC 31
support for decision-making: 診断や考えをまとめるのに役立った度合い 3. Workload: 使いこなすのに必要だった労力や、使うときに感じた苛立ち度合い 4. Trust: システムの能力と、その振る舞いについての信頼度合い 5. Future use: 業務でこの先使いたいと思う度合い 6. Overall preference between the two interfaces: 総合評価 User Study 32
Interface and System Design 5. Tool Evaluation Study 6. User Study 7. User Study Results 8. Tool Use and Navigation Patterns <- 9. Decision Making and Coping With Black-box ML 10. Discussion 11. Conclusion TOC 34
Interface and System Design 5. Tool Evaluation Study 6. User Study 7. User Study Results 8. Tool Use and Navigation Patterns 9. Decision Making and Coping With Black-box ML <- 10. Discussion 11. Conclusion TOC 41
果はどんどん悪くなる 機械学習モデルのメンタルモデルを作る ユーザーは機械学習モデルがどう「考えて」いるのかを想像する (特に、機械 学習モデルが意図しない間違え方をしたときに) こいつは人間の脳の動きを真似ようとしてると思うんだよね Refinement Strategies for Coping with ML (1/2) 44
Interface and System Design 5. Tool Evaluation Study 6. User Study 7. User Study Results 8. Tool Use and Navigation Patterns 9. Decision Making and Coping With Black-box ML 10. Discussion <- 11. Conclusion TOC 46
Interface and System Design 5. Tool Evaluation Study 6. User Study 7. User Study Results 8. Tool Use and Navigation Patterns 9. Decision Making and Coping With Black-box ML 10. Discussion <- 11. Conclusion TOC 48
Clinics for the Detection of Diabetic Retinopathy Emma Beede, Elizabeth Baylor, Fred Hersch, Anna Iurchenko, Lauren Wilcox, Paisan Ruamviboonsuk, Laura M. Vardoulaki
| Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems Google AI Blog: Building SMILY, a Human-Centric, Similar-Image Search Tool for Pathology A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy | Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems Healthcare AI systems that put people at the center Googleの失敗から学ぶ、AIツールを医療現場へ適用することの難しさ How Google does Machine Learning 日本語版 | Coursera Reference 55