Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Depth画像で物体検知やってみたー。/ Objects Detection with Dep...
Search
moonlight-aska
February 08, 2020
Technology
0
790
Depth画像で物体検知やってみたー。/ Objects Detection with Depth Images
2020年2月8日開催の「【奈良】GCPUG in Nara #5【CODE for NARA共催】~ はじめてみよう!! Docker/Kubernetes入門 ~」のLT資料です.
moonlight-aska
February 08, 2020
Tweet
Share
More Decks by moonlight-aska
See All by moonlight-aska
Create Your Own AI with Dify×Gemma3
aska
0
35
Generative AI Prototyping
aska
0
5
【入門】プロンプトの書き方のコツ / Tips for writing prompts
aska
0
190
CHATGPT。はじめの一歩 / ChatGPT. Get Started
aska
0
130
「Kingyo AI Navi」アプリ / Kingyo AI Navi App
aska
0
260
Kingo AI Navi LINEをもっと使い倒せ!!
aska
0
140
Kingyo AI Naviアプリ開発 / Kingyo AI Navi App
aska
0
430
AutoML Vision Edgeで金魚分類モデルを学習してみた / Kingyo Classification Model with AutoML Vision Edge
aska
0
560
AutoML Vision Edge + ML Kit for Firebase ⇒ Kingyo Classification
aska
1
710
Other Decks in Technology
See All in Technology
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
0
270
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
530
Knowledge Work の AI Backend
kworkdev
PRO
0
340
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
180
[Neurogica] 採用ポジション/ Recruitment Position
neurogica
1
140
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
5
12k
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
620
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
130
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
280
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
2k
AIと融ける人間の冒険
pujisi
0
100
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2.6k
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
830
HDC tutorial
michielstock
1
280
Six Lessons from altMBA
skipperchong
29
4.1k
How STYLIGHT went responsive
nonsquared
100
6k
Done Done
chrislema
186
16k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
100
Speed Design
sergeychernyshev
33
1.5k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
170
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
96
Transcript
Depth画像で物体検知やってみたー。 2020/2/8 CODE for YAMATOKORIYAMA Moonlight 明日香 GCPUG in Nara
#5 LT
自己紹介 Facebook moonlight.aska Twitter @moonlight_aska Blog みらいテックラボ http://mirai-tec.hatenablog.com ➢ 鶴田
彰 ➢ (昔の)得意分野 : パターン認識(音声, 画像, etc) ユーザ適応(レコメンド, etc) ➢ コミュニティ活動 : CODE for YAMATOKORIYAMA GCPUG NARA Organizer
おことわり GCPまったくでてきません!!
そもそもの始まり ◼ 2017年12月 ある大きな施設で来場者をカウントしたーい!!
そもそもの始まり アイデア出し(2018.1.14) 1. カメラ RGBカメラだと個人特定できるのでカメラ設置を嫌がれるかも. 2. 感圧マット 3. 赤外線センサ :
提案: 3Dセンサ(Depthカメラ)による人の出入りカウント 理由: ✓ 3Dセンサならプライバシーの問題を回避可能. ✓ 施設内での動線(人の流れ)解析へ拡張しやすそう.
これまでの取組み ◼2018年1月アイデア出し ◼2018年2-4月プロトタイプ開発 ◼2018年12月実証実験@Hug2祭り 課題①:複数人の同時通行 課題②:自動ドアの影響 ◼2019年8月-11月YOLOv3版開発 ◼2019年12月実証実験@Hug2祭り 課題①の例 課題②の例
実証実験の様子(2回目) 2019/12/1 Hug2祭り@奈良市ボランティアインフォメーションセンター 3Dカメラによる人数カウント
計測状況
来場者測定結果
Depthカメラとは? X Y ー 物体の色 + 物体までの距離(Z方向) 実空間上(XYZ)の位置/動きを感知すること!! 写真撮影 RGB画像
https://www.tdk.co.jp/techmag/knowledge/201102u/
システム構成 Intel RealSense D415/D435 Jetson Nano USB3.0 2019年版 2018年版 Intel
RealSense D415/D435 ASUS VivoMini UN62 USB3.0
処理の流れ 距 離 画 像 取 り 込 み グ
レ ー ス ケ ー ル 変 換 人 物 検 出 人 物 領 域 重 心 計 算 追 跡 中 人 物 と 照 合 人 物 情 報 更 新 人 数 カ ウ ン ト YOLOv3 2019年版 2018年版 画 像 取 り 込 み 背 景 差 分 二 値 化 ノ イ ズ 除 去 輪 郭 抽 出 人 物 領 域 重 心 計 算 追 跡 中 人 物 と 照 合 人 物 情 報 更 新 人 数 カ ウ ン ト
YOLOv3とは https://pjreddie.com/darknet/ YOLO Darknet Open Source Neural Networks in C
Real Time Object Detection
Pythonで動かすには YOLOv3はCによるライブラリ PythonでYOLOv3を動かす方法: 1. ctypes(*1)を使う ⇒ darknet/python/darknet.py 2. YOLOv3の学習済モデルを使う ⇒
keras-yolo3 *1:このライブラリはCと互換性のあるデータ型を提供し, 動的リンク/共有 ライブラリ内の関数呼び出しを可能にする.
JetsonNanoで動かすには 課題はすぐにやってきたー. ★3-4 FPSとフレーム毎の処理がまったく間に合わない!! 15FPS程度まで改善 対策①:画像を640x480→320x240にリサイズして渡す 対策②:YOLOv3のモデルの入力サイズを 416x416→224x224に 原因:OpenCVの画像データからYOLOv3に渡す画像デー タに変換する処理.
検出精度をあげるには [当初] [改良後] 手や荷物で変形パターンが多い
トラッキングとカウント 追跡中 人物 ID=10 ID=12 ID=13 処理中 フレーム LEFT・RIGHTエリア ×
× 〇 〇 判定エリア
新たな課題も ◼ 単独通過だが人物検出に失敗 ◼ 子供の検出に失敗 ◼ 通過判定線付近に人物が停滞すると連続カウントup 全国金魚すくい選手権で 来場者のカウントをやってみるか!?
Thank You!