Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Depth画像で物体検知やってみたー。/ Objects Detection with Dep...
Search
moonlight-aska
February 08, 2020
Technology
0
700
Depth画像で物体検知やってみたー。/ Objects Detection with Depth Images
2020年2月8日開催の「【奈良】GCPUG in Nara #5【CODE for NARA共催】~ はじめてみよう!! Docker/Kubernetes入門 ~」のLT資料です.
moonlight-aska
February 08, 2020
Tweet
Share
More Decks by moonlight-aska
See All by moonlight-aska
【入門】プロンプトの書き方のコツ / Tips for writing prompts
aska
0
150
CHATGPT。はじめの一歩 / ChatGPT. Get Started
aska
0
100
「Kingyo AI Navi」アプリ / Kingyo AI Navi App
aska
0
230
Kingo AI Navi LINEをもっと使い倒せ!!
aska
0
110
Kingyo AI Naviアプリ開発 / Kingyo AI Navi App
aska
0
400
AutoML Vision Edgeで金魚分類モデルを学習してみた / Kingyo Classification Model with AutoML Vision Edge
aska
0
530
AutoML Vision Edge + ML Kit for Firebase ⇒ Kingyo Classification
aska
1
670
Kingyo AI Navi
aska
0
630
ピープルカウンタ、その後。/ People Counter
aska
0
580
Other Decks in Technology
See All in Technology
脅威をモデリングしてMCPのセキュリティ対策を考えよう
flatt_security
4
1.7k
ゆるSRE #11 LT
okaru
1
640
Snowflake Intelligenceで実現できるノーコードAI活用
takumimukaiyama
1
240
開発効率と信頼性を両立する Ubieのプラットフォームエンジニアリング
teru0x1
0
140
宇宙パトロール ルル子から考える LT設計のコツ
masakiokuda
2
100
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
6.4k
IAMのマニアックな話 2025を執筆して、 見えてきたAWSアカウント管理の現在
nrinetcom
PRO
4
580
白金鉱業Meetup_Vol.19_PoCはデモで語れ!顧客の本音とインサイトを引き出すソリューション構築
brainpadpr
2
390
In Praise of "Normal" Engineers (LDX3)
charity
2
990
Devin(Deep) Wiki/Searchの活用で変わる開発の世界観/devin-wiki-search-impact
tomoki10
0
330
Copilot Agentを普段使いしてわかった、バックエンド開発で使えるTips
ykagano
1
1.2k
Amplifyとゼロからはじめた AIコーディング 成果と展望
mkdev10
1
270
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.3k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Unsuck your backbone
ammeep
671
58k
The Invisible Side of Design
smashingmag
299
51k
The Language of Interfaces
destraynor
158
25k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
A designer walks into a library…
pauljervisheath
206
24k
Automating Front-end Workflow
addyosmani
1370
200k
GraphQLとの向き合い方2022年版
quramy
46
14k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
Depth画像で物体検知やってみたー。 2020/2/8 CODE for YAMATOKORIYAMA Moonlight 明日香 GCPUG in Nara
#5 LT
自己紹介 Facebook moonlight.aska Twitter @moonlight_aska Blog みらいテックラボ http://mirai-tec.hatenablog.com ➢ 鶴田
彰 ➢ (昔の)得意分野 : パターン認識(音声, 画像, etc) ユーザ適応(レコメンド, etc) ➢ コミュニティ活動 : CODE for YAMATOKORIYAMA GCPUG NARA Organizer
おことわり GCPまったくでてきません!!
そもそもの始まり ◼ 2017年12月 ある大きな施設で来場者をカウントしたーい!!
そもそもの始まり アイデア出し(2018.1.14) 1. カメラ RGBカメラだと個人特定できるのでカメラ設置を嫌がれるかも. 2. 感圧マット 3. 赤外線センサ :
提案: 3Dセンサ(Depthカメラ)による人の出入りカウント 理由: ✓ 3Dセンサならプライバシーの問題を回避可能. ✓ 施設内での動線(人の流れ)解析へ拡張しやすそう.
これまでの取組み ◼2018年1月アイデア出し ◼2018年2-4月プロトタイプ開発 ◼2018年12月実証実験@Hug2祭り 課題①:複数人の同時通行 課題②:自動ドアの影響 ◼2019年8月-11月YOLOv3版開発 ◼2019年12月実証実験@Hug2祭り 課題①の例 課題②の例
実証実験の様子(2回目) 2019/12/1 Hug2祭り@奈良市ボランティアインフォメーションセンター 3Dカメラによる人数カウント
計測状況
来場者測定結果
Depthカメラとは? X Y ー 物体の色 + 物体までの距離(Z方向) 実空間上(XYZ)の位置/動きを感知すること!! 写真撮影 RGB画像
https://www.tdk.co.jp/techmag/knowledge/201102u/
システム構成 Intel RealSense D415/D435 Jetson Nano USB3.0 2019年版 2018年版 Intel
RealSense D415/D435 ASUS VivoMini UN62 USB3.0
処理の流れ 距 離 画 像 取 り 込 み グ
レ ー ス ケ ー ル 変 換 人 物 検 出 人 物 領 域 重 心 計 算 追 跡 中 人 物 と 照 合 人 物 情 報 更 新 人 数 カ ウ ン ト YOLOv3 2019年版 2018年版 画 像 取 り 込 み 背 景 差 分 二 値 化 ノ イ ズ 除 去 輪 郭 抽 出 人 物 領 域 重 心 計 算 追 跡 中 人 物 と 照 合 人 物 情 報 更 新 人 数 カ ウ ン ト
YOLOv3とは https://pjreddie.com/darknet/ YOLO Darknet Open Source Neural Networks in C
Real Time Object Detection
Pythonで動かすには YOLOv3はCによるライブラリ PythonでYOLOv3を動かす方法: 1. ctypes(*1)を使う ⇒ darknet/python/darknet.py 2. YOLOv3の学習済モデルを使う ⇒
keras-yolo3 *1:このライブラリはCと互換性のあるデータ型を提供し, 動的リンク/共有 ライブラリ内の関数呼び出しを可能にする.
JetsonNanoで動かすには 課題はすぐにやってきたー. ★3-4 FPSとフレーム毎の処理がまったく間に合わない!! 15FPS程度まで改善 対策①:画像を640x480→320x240にリサイズして渡す 対策②:YOLOv3のモデルの入力サイズを 416x416→224x224に 原因:OpenCVの画像データからYOLOv3に渡す画像デー タに変換する処理.
検出精度をあげるには [当初] [改良後] 手や荷物で変形パターンが多い
トラッキングとカウント 追跡中 人物 ID=10 ID=12 ID=13 処理中 フレーム LEFT・RIGHTエリア ×
× 〇 〇 判定エリア
新たな課題も ◼ 単独通過だが人物検出に失敗 ◼ 子供の検出に失敗 ◼ 通過判定線付近に人物が停滞すると連続カウントup 全国金魚すくい選手権で 来場者のカウントをやってみるか!?
Thank You!