Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
対数線形モデル、ニューラルネット、RNN
Search
Ayumu
February 07, 2019
Technology
0
310
対数線形モデル、ニューラルネット、RNN
長岡技術科学大学
自然言語処理研究室 守谷歩
Ayumu
February 07, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
180
マルチモーダル学習
ayumum
0
170
B3ゼミ 自然言語処理におけるCNN
ayumum
0
110
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
120
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
180
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
130
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
200
Other Decks in Technology
See All in Technology
Kotlinで型安全にバイテンポラルデータを扱いたい! ReladomoラッパーをAIと実装してみた話
itohiro73
3
130
文字列操作の達人になる ~ Kotlinの文字列の便利な世界 ~ - Kotlin fest 2025
tomorrowkey
2
300
書籍『実践 Apache Iceberg』の歩き方
ishikawa_satoru
0
390
dbtとAIエージェントを組み合わせて見えたデータ調査の新しい形
10xinc
7
1.7k
オブザーバビリティが育むシステム理解と好奇心
maruloop
3
1.9k
AIの個性を理解し、指揮する
shoota
3
590
今から間に合う re:Invent 準備グッズと現地の地図、その他ラスベガスを周る際の Tips/reinvent-preparation-guide
emiki
1
200
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
960
Open Table Format (OTF) が必要になった背景とその機能 (2025.10.28)
simosako
3
570
Azure Well-Architected Framework入門
tomokusaba
1
150
サブドメインテイクオーバー事例紹介と対策について
mikit
1
110
AI機能プロジェクト炎上の 3つのしくじりと学び
nakawai
0
180
Featured
See All Featured
Scaling GitHub
holman
463
140k
Visualization
eitanlees
150
16k
Context Engineering - Making Every Token Count
addyosmani
8
320
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
Designing for humans not robots
tammielis
254
26k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
How STYLIGHT went responsive
nonsquared
100
5.9k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
The Language of Interfaces
destraynor
162
25k
Code Reviewing Like a Champion
maltzj
526
40k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Transcript
言語モデル 2019/02/07 長岡技術科学大学 自然言語処理研究室 学部3年 守谷 歩 対数線形言語モデル、ニューラルネット,RNN
機械翻訳とか ⚫機械翻訳などでは翻訳したい文に対して単語の確率を見て、一番 合っていそうなものを翻訳後の文として出力する。 ⚫単語の確率はほんとに正しいのか?
単語の数を見た単純な確率計算 ⚫学習データ: 1.私 は 読書 が 好き だ </s> 2.私
の 本 は 1900年代 に 書かれた </s> 3.1900年代 は 20世紀 だ </s> ⚫ は < s > 私 = <>私は (<>私) = 1 2 = 0.5 それっぽい ⚫ 20世紀 < > 私の本は = <>私の本は20世紀 (私の本は) = 0 1 = 0
N-gramモデル ⚫2-gramモデルなら直前の1単語を使って学習 ⚫学習データ: 1.私 は 読書 が 好き だ </s>
2.私 の 本 は 1900年代 に 書かれた </s> 3.1900年代 は 20世紀 だ </s> ⚫Nを増やしていけば増やすだけ精度が上がる! ⚫精度が上がるが計算量がすごい増える
対数線形モデル ⚫履歴のデータを参考にスコア計算、その後スコアの指数を取って正規化する ⚫スコアs −+1 −1 = + σ=1 −1 ,−
(b:バイアス,d:学習データ ⚫正規化したモデル ( |−+1 −1 ) = |−+1 −1 σ |−+1 −1 ⚫尤度の勾配 = |−+1 −1 ( :単語,w:パラメータ) ⚫重みの更新 ≪ + ∗ (a:学習率= 1 + ,w:パラメータ,n:サンプル数)
Softmax関数 ⚫スコアsをベクトルとして考える場合スコアsを確立pとする関数を softmax関数と言う −+1 −1 = −+1 −1
ニューラルネットへの導入 ⚫対数線形モデルって結局どんな感じ? Soft max 1 2 1 −2 −1 =
( +  =1 −1 − ) −1 = {1,0,0,0,0, … } −2 = {0,0,0,0,1, … }
ニューラルネットへの導入 ⚫ニューラルネットの概念 ⇒ 非線形関数を計算する隠れ層を追加 tanh 1 2 1 −2 −1
ℎ = tanh( +  =1 −1 − ) = (ℎ ℎ ) soft max ℎ ℎ
逆伝搬 ⚫勾配を出力から逆順に伝搬する tanh 1 2 1 −2 −1 soft max
ℎ ℎ ℎ
リカレントニューラルネット(RNN) ⚫ノードの一部の出力を入力として戻す tanh 1 2 1 −2 −1 soft max
ℎ ℎ