Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
対数線形モデル、ニューラルネット、RNN
Search
Ayumu
February 07, 2019
Technology
0
320
対数線形モデル、ニューラルネット、RNN
長岡技術科学大学
自然言語処理研究室 守谷歩
Ayumu
February 07, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
190
マルチモーダル学習
ayumum
0
180
B3ゼミ 自然言語処理におけるCNN
ayumum
0
120
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
140
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
210
Other Decks in Technology
See All in Technology
Digitization部 紹介資料
sansan33
PRO
1
6.4k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
840
CQRS/ESになぜアクターモデルが必要なのか
j5ik2o
0
710
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
製造業から学んだ「本質を守り現場に合わせるアジャイル実践」
kamitokusari
0
440
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
「アウトプット脳からユーザー価値脳へ」がそんなに簡単にできたら苦労しない #RSGT2026
aki_iinuma
9
4.3k
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.4k
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
1
380
戰略轉變:從建構 AI 代理人到發展可擴展的技能生態系統
appleboy
0
180
コールドスタンバイ構成でCDは可能か
hiramax
0
130
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
480
Featured
See All Featured
A Soul's Torment
seathinner
2
2.1k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
690
Optimizing for Happiness
mojombo
379
70k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
87
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
140
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
42
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
92
A Tale of Four Properties
chriscoyier
162
23k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
1
340
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
230
Transcript
言語モデル 2019/02/07 長岡技術科学大学 自然言語処理研究室 学部3年 守谷 歩 対数線形言語モデル、ニューラルネット,RNN
機械翻訳とか ⚫機械翻訳などでは翻訳したい文に対して単語の確率を見て、一番 合っていそうなものを翻訳後の文として出力する。 ⚫単語の確率はほんとに正しいのか?
単語の数を見た単純な確率計算 ⚫学習データ: 1.私 は 読書 が 好き だ </s> 2.私
の 本 は 1900年代 に 書かれた </s> 3.1900年代 は 20世紀 だ </s> ⚫ は < s > 私 = <>私は (<>私) = 1 2 = 0.5 それっぽい ⚫ 20世紀 < > 私の本は = <>私の本は20世紀 (私の本は) = 0 1 = 0
N-gramモデル ⚫2-gramモデルなら直前の1単語を使って学習 ⚫学習データ: 1.私 は 読書 が 好き だ </s>
2.私 の 本 は 1900年代 に 書かれた </s> 3.1900年代 は 20世紀 だ </s> ⚫Nを増やしていけば増やすだけ精度が上がる! ⚫精度が上がるが計算量がすごい増える
対数線形モデル ⚫履歴のデータを参考にスコア計算、その後スコアの指数を取って正規化する ⚫スコアs −+1 −1 = + σ=1 −1 ,−
(b:バイアス,d:学習データ ⚫正規化したモデル ( |−+1 −1 ) = |−+1 −1 σ |−+1 −1 ⚫尤度の勾配 = |−+1 −1 ( :単語,w:パラメータ) ⚫重みの更新 ≪ + ∗ (a:学習率= 1 + ,w:パラメータ,n:サンプル数)
Softmax関数 ⚫スコアsをベクトルとして考える場合スコアsを確立pとする関数を softmax関数と言う −+1 −1 = −+1 −1
ニューラルネットへの導入 ⚫対数線形モデルって結局どんな感じ? Soft max 1 2 1 −2 −1 =
( + =1 −1 − ) −1 = {1,0,0,0,0, … } −2 = {0,0,0,0,1, … }
ニューラルネットへの導入 ⚫ニューラルネットの概念 ⇒ 非線形関数を計算する隠れ層を追加 tanh 1 2 1 −2 −1
ℎ = tanh( + =1 −1 − ) = (ℎ ℎ ) soft max ℎ ℎ
逆伝搬 ⚫勾配を出力から逆順に伝搬する tanh 1 2 1 −2 −1 soft max
ℎ ℎ ℎ
リカレントニューラルネット(RNN) ⚫ノードの一部の出力を入力として戻す tanh 1 2 1 −2 −1 soft max
ℎ ℎ