Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Talk: Rencontre des Jeunes Physiciens 2021

Talk: Rencontre des Jeunes Physiciens 2021

Avatar for berlemontkevin

berlemontkevin

March 23, 2021
Tweet

More Decks by berlemontkevin

Other Decks in Education

Transcript

  1. Nonlinear neural network dynamics accounts for human confidence in a

    sequence of perceptual decisions Rencontres des Jeunes Physicien·ne·s 2021 Kevin Berlemont Laboratoire de Physique de l’ENS Center for Neural Science - NYU
  2. PhD Advisor: Jean-Pierre Nadal (LPENS, CAMS - EHESS) In Collaboration

    with: Jerˆ ome Sackur (LSCP - EHESS) and Jean-R´ emy Martin (CRCN - ULB) Thanks to: Laurent Bonasse-Gahot (CAMS - EHESS) Fellowship: CDSN Ecole Normale Sup´ erieure Paris-Saclay 2/13
  3. Experimental setup 200 ms 100 ms 200 ms Decision Time

    K. Berlemont et al. (2020). “Nonlinear neural network dynamics accounts for human confidence in a sequence of perceptual decisions”. Scientific reports 10.1, pp. 1–16. 4/13
  4. Attractor Model R L dSi dt = − Si τs

    + (1 − Si ) γf (Ii,tot) f (Ii,tot) = af (Ii,tot) − b 1 − exp [−d (af (Ii,tot) − b)] K.-F. Wong and X.-J. Wang (2006). “A Recurrent Network Mechanism of Time Integration in Perceptual Decisions”. Journal of Neuroscience 26.4, pp. 1314–1328. 6/13
  5. Attractor Model R L IL IR IL,tot = I0 +

    IL + Inoise,L K.-F. Wong and X.-J. Wang (2006). “A Recurrent Network Mechanism of Time Integration in Perceptual Decisions”. Journal of Neuroscience 26.4, pp. 1314–1328. 6/13
  6. Attractor Model R L IL IR IL,tot = I0 +

    IL + Inoise,L + JLLSL K.-F. Wong and X.-J. Wang (2006). “A Recurrent Network Mechanism of Time Integration in Perceptual Decisions”. Journal of Neuroscience 26.4, pp. 1314–1328. 6/13
  7. Attractor Model R L IL IR IL,tot = I0 +

    IL + Inoise,L + JLLSL − JLRSR K.-F. Wong and X.-J. Wang (2006). “A Recurrent Network Mechanism of Time Integration in Perceptual Decisions”. Journal of Neuroscience 26.4, pp. 1314–1328. 6/13
  8. Attractor Model R L IL IR Decision θ Time (ms)

    ri (Hz) K.-F. Wong and X.-J. Wang (2006). “A Recurrent Network Mechanism of Time Integration in Perceptual Decisions”. Journal of Neuroscience 26.4, pp. 1314–1328. 6/13
  9. Behavioral results K. Berlemont et al. (2020). “Nonlinear neural network

    dynamics accounts for human confidence in a sequence of perceptual decisions”. Scientific reports 10.1, pp. 1–16. 8/13
  10. Histogram matching Confidence Participant 1 Confidence Confidence Confidence Confidence Confidence

    Participant 2 Participant 3 Participant 6 K. Berlemont et al. (2020). “Nonlinear neural network dynamics accounts for human confidence in a sequence of perceptual decisions”. Scientific reports 10.1, pp. 1–16. 11/13
  11. Histogram matching Participant 3 Participant 2 Participant 1 Participant 6

    Participant 5 Participant 4 K. Berlemont et al. (2020). “Nonlinear neural network dynamics accounts for human confidence in a sequence of perceptual decisions”. Scientific reports 10.1, pp. 1–16. 11/13
  12. Matching with data K. Berlemont et al. (2020). “Nonlinear neural

    network dynamics accounts for human confidence in a sequence of perceptual decisions”. Scientific reports 10.1, pp. 1–16. 12/13
  13. Matching with data K. Berlemont et al. (2020). “Nonlinear neural

    network dynamics accounts for human confidence in a sequence of perceptual decisions”. Scientific reports 10.1, pp. 1–16. 12/13
  14. Conclusion Attractor neural networks can be fitted to individual participants.

    It relates accurately confidence, response times and accuracy. 13/13
  15. Conclusion Attractor neural networks can be fitted to individual participants.

    It relates accurately confidence, response times and accuracy. Non-linearity explains various effects observed in decision-making experiments. 13/13