$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ESEML: Empirical Softare Engineering Modeling L...
Search
Bruno Cartaxo
October 22, 2012
Research
0
74
ESEML: Empirical Softare Engineering Modeling Language
Bruno Cartaxo
October 22, 2012
Tweet
Share
More Decks by Bruno Cartaxo
See All by Bruno Cartaxo
Mestrado e Doutorado em Computação - UTFPR
brunocartaxo
0
28
Mestrado e Doutorado - Tempest
brunocartaxo
0
28
MESTRADO E DOUTORADO: Que danado é isso? Devo fazer?
brunocartaxo
0
77
RAPID REVIEW IN SOFTWARE ENGINEERING: Making Scientific Evidence Relevant To Practitioners
brunocartaxo
0
48
Rapid Reviews in Software Engineering
brunocartaxo
0
72
DO BRASIL À CHINA, PASSANDO POR CINCO CONTINENTES: COMO PESQUISAR ME ABRIU AS PORTAS PARA O MUNDO
brunocartaxo
0
46
SOFTWARE ENGINEERING RESEARCH COMMUNITY VIEWPOINTS ON RAPID REVIEWS
brunocartaxo
1
160
KNOWLEDGE AND TECHNOLOGY TRANSFER BETWEEN RESEARCH AND PRACTICE IN SOFTWARE ENGINEERING - LINE OF RESEARCH AND VISIONS
brunocartaxo
1
70
O Impacto das Novas Tecnologias na Prática Jurídica
brunocartaxo
0
210
Other Decks in Research
See All in Research
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
250
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
200
財務諸表監査のための逐次検定
masakat0
0
210
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.2k
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.6k
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
450
湯村研究室の紹介2025 / yumulab2025
yumulab
0
270
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
140
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
180
Featured
See All Featured
KATA
mclloyd
PRO
33
15k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
850
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
0
950
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
Crafting Experiences
bethany
0
22
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
230
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Transcript
ESEML Empirical Softare Engineering Modeling Language Bruno Cartaxo [
[email protected]
] Ítalo
Costa [
[email protected]
] Dhiego Martns [
[email protected]
] André Santos [
[email protected]
] Sérgio Soares [
[email protected]
] Vinícius Garcia [
[email protected]
]
MOTIVATION Researches in Softare Engineering normally proposes net practces to
increase productvity and quality. A great part of these researches fail to present empirical evidence.
EMPIRICAL SOFTWARE ENGINEERING There are several types of empirical studies.
Such as, surveys, case studies, secondary studies, acton research and controlled experiments.
CONTROLLED EXPERIMENTS According to Sjoberg only 1.9% of artcles has
a controlled experiment and the quality is not very high. With Experiment s Without Experiment
CONTROLLED EXPERIMENTS Wide range of skills is necessary to conduct
experiments that ofen create a barrier for adoptng it. Skills in terminology, statstcs knot hot and expertse in experimental design.
OBJECTIVE Facilitate the modeling process and defniton of an experimental
plan. By mitgatng social barriers betteen stakeholders. Such as statstcians, experiments designers, and domain experts.
PROPOSAL DSLs are efcient to model specifc domains + Controlled
experiments have their specifc domain elements = ESEML guides controlled experiments modeling in softare engineering and reduces social barriers
ESEML A visual DSL for modeling controlled experiments in softare
engineering. That Automatcally generate the experimental plan from an instantaton of a domain model.
METHODOLOGY Informal reviet of models, ontologies and formal representatons for
controlled experiments. Meta-model based on the reviet. Microsof DSL Tools to create the DSL and its related torkbench.
META-MODEL
LANGUAGE WORKBENCH ELEMENTS PALLETE EXPERIMENT MODEL
LANGUAGE WORKBENCH Parameter Hypothesis Dependent Variable Tratment Factor Experiment Validity
Goal Queston Metric
GENERATED DOCUMENT
DOCUMENT PARTS
CONCLUSION ESEML is the kickof to a major initatve for
defne a platorm of empirical studies in softare engineering.
FUTURE WORK Automatcally generaton of artfacts to collect data and
execute experiments. Systematc reviet to more accurate meta-model . Empirical evaluaton of ESEML.
?