Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ESEML: Empirical Softare Engineering Modeling L...
Search
Bruno Cartaxo
October 22, 2012
Research
0
74
ESEML: Empirical Softare Engineering Modeling Language
Bruno Cartaxo
October 22, 2012
Tweet
Share
More Decks by Bruno Cartaxo
See All by Bruno Cartaxo
Mestrado e Doutorado em Computação - UTFPR
brunocartaxo
0
31
Mestrado e Doutorado - Tempest
brunocartaxo
0
31
MESTRADO E DOUTORADO: Que danado é isso? Devo fazer?
brunocartaxo
0
79
RAPID REVIEW IN SOFTWARE ENGINEERING: Making Scientific Evidence Relevant To Practitioners
brunocartaxo
0
48
Rapid Reviews in Software Engineering
brunocartaxo
0
74
DO BRASIL À CHINA, PASSANDO POR CINCO CONTINENTES: COMO PESQUISAR ME ABRIU AS PORTAS PARA O MUNDO
brunocartaxo
0
48
SOFTWARE ENGINEERING RESEARCH COMMUNITY VIEWPOINTS ON RAPID REVIEWS
brunocartaxo
1
160
KNOWLEDGE AND TECHNOLOGY TRANSFER BETWEEN RESEARCH AND PRACTICE IN SOFTWARE ENGINEERING - LINE OF RESEARCH AND VISIONS
brunocartaxo
1
71
O Impacto das Novas Tecnologias na Prática Jurídica
brunocartaxo
0
220
Other Decks in Research
See All in Research
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
120
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
240
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
700
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
120
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
160
データサイエンティストの業務変化
datascientistsociety
PRO
0
150
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
500
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
590
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
410
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
380
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
250
Featured
See All Featured
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
39
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
94
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
51
Code Reviewing Like a Champion
maltzj
527
40k
Testing 201, or: Great Expectations
jmmastey
46
7.9k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
The Curse of the Amulet
leimatthew05
0
7.2k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
38
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
Transcript
ESEML Empirical Softare Engineering Modeling Language Bruno Cartaxo [
[email protected]
] Ítalo
Costa [
[email protected]
] Dhiego Martns [
[email protected]
] André Santos [
[email protected]
] Sérgio Soares [
[email protected]
] Vinícius Garcia [
[email protected]
]
MOTIVATION Researches in Softare Engineering normally proposes net practces to
increase productvity and quality. A great part of these researches fail to present empirical evidence.
EMPIRICAL SOFTWARE ENGINEERING There are several types of empirical studies.
Such as, surveys, case studies, secondary studies, acton research and controlled experiments.
CONTROLLED EXPERIMENTS According to Sjoberg only 1.9% of artcles has
a controlled experiment and the quality is not very high. With Experiment s Without Experiment
CONTROLLED EXPERIMENTS Wide range of skills is necessary to conduct
experiments that ofen create a barrier for adoptng it. Skills in terminology, statstcs knot hot and expertse in experimental design.
OBJECTIVE Facilitate the modeling process and defniton of an experimental
plan. By mitgatng social barriers betteen stakeholders. Such as statstcians, experiments designers, and domain experts.
PROPOSAL DSLs are efcient to model specifc domains + Controlled
experiments have their specifc domain elements = ESEML guides controlled experiments modeling in softare engineering and reduces social barriers
ESEML A visual DSL for modeling controlled experiments in softare
engineering. That Automatcally generate the experimental plan from an instantaton of a domain model.
METHODOLOGY Informal reviet of models, ontologies and formal representatons for
controlled experiments. Meta-model based on the reviet. Microsof DSL Tools to create the DSL and its related torkbench.
META-MODEL
LANGUAGE WORKBENCH ELEMENTS PALLETE EXPERIMENT MODEL
LANGUAGE WORKBENCH Parameter Hypothesis Dependent Variable Tratment Factor Experiment Validity
Goal Queston Metric
GENERATED DOCUMENT
DOCUMENT PARTS
CONCLUSION ESEML is the kickof to a major initatve for
defne a platorm of empirical studies in softare engineering.
FUTURE WORK Automatcally generaton of artfacts to collect data and
execute experiments. Systematc reviet to more accurate meta-model . Empirical evaluaton of ESEML.
?