Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ESEML: Empirical Softare Engineering Modeling L...
Search
Bruno Cartaxo
October 22, 2012
Research
0
67
ESEML: Empirical Softare Engineering Modeling Language
Bruno Cartaxo
October 22, 2012
Tweet
Share
More Decks by Bruno Cartaxo
See All by Bruno Cartaxo
Mestrado e Doutorado em Computação - UTFPR
brunocartaxo
0
20
Mestrado e Doutorado - Tempest
brunocartaxo
0
23
MESTRADO E DOUTORADO: Que danado é isso? Devo fazer?
brunocartaxo
0
69
RAPID REVIEW IN SOFTWARE ENGINEERING: Making Scientific Evidence Relevant To Practitioners
brunocartaxo
0
45
Rapid Reviews in Software Engineering
brunocartaxo
0
69
DO BRASIL À CHINA, PASSANDO POR CINCO CONTINENTES: COMO PESQUISAR ME ABRIU AS PORTAS PARA O MUNDO
brunocartaxo
0
44
SOFTWARE ENGINEERING RESEARCH COMMUNITY VIEWPOINTS ON RAPID REVIEWS
brunocartaxo
1
150
KNOWLEDGE AND TECHNOLOGY TRANSFER BETWEEN RESEARCH AND PRACTICE IN SOFTWARE ENGINEERING - LINE OF RESEARCH AND VISIONS
brunocartaxo
1
67
O Impacto das Novas Tecnologias na Prática Jurídica
brunocartaxo
0
190
Other Decks in Research
See All in Research
自然由来エネルギーの揺らぎによるワークロード移動を想定した超個体データセンターシステムの検討進捗状況
kikuzo
0
110
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
740
資産間の相関関係を頑健に評価する指標を用いたファクターアローケーション戦略の構築
nomamist
0
200
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
3.6k
小ねぎ調製位置検出のためのインスタンスセグメンテーション
takuto_andtt
0
150
Weekly AI Agents News! 2月号 アーカイブ
masatoto
1
170
学生向けアンケート<データサイエンティストについて>
datascientistsociety
PRO
0
1.5k
JSAI NeurIPS 2024 参加報告会(AI アライメント)
akifumi_wachi
5
990
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
650
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
0
700
言語モデルの内部機序:解析と解釈
eumesy
PRO
39
17k
Scale-Aware Recognition in Satellite images Under Resource Constraints
satai
3
200
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
Writing Fast Ruby
sferik
628
61k
Designing for Performance
lara
608
69k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
Documentation Writing (for coders)
carmenintech
71
4.8k
Docker and Python
trallard
44
3.4k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
How STYLIGHT went responsive
nonsquared
100
5.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.5k
4 Signs Your Business is Dying
shpigford
183
22k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Transcript
ESEML Empirical Softare Engineering Modeling Language Bruno Cartaxo [
[email protected]
] Ítalo
Costa [
[email protected]
] Dhiego Martns [
[email protected]
] André Santos [
[email protected]
] Sérgio Soares [
[email protected]
] Vinícius Garcia [
[email protected]
]
MOTIVATION Researches in Softare Engineering normally proposes net practces to
increase productvity and quality. A great part of these researches fail to present empirical evidence.
EMPIRICAL SOFTWARE ENGINEERING There are several types of empirical studies.
Such as, surveys, case studies, secondary studies, acton research and controlled experiments.
CONTROLLED EXPERIMENTS According to Sjoberg only 1.9% of artcles has
a controlled experiment and the quality is not very high. With Experiment s Without Experiment
CONTROLLED EXPERIMENTS Wide range of skills is necessary to conduct
experiments that ofen create a barrier for adoptng it. Skills in terminology, statstcs knot hot and expertse in experimental design.
OBJECTIVE Facilitate the modeling process and defniton of an experimental
plan. By mitgatng social barriers betteen stakeholders. Such as statstcians, experiments designers, and domain experts.
PROPOSAL DSLs are efcient to model specifc domains + Controlled
experiments have their specifc domain elements = ESEML guides controlled experiments modeling in softare engineering and reduces social barriers
ESEML A visual DSL for modeling controlled experiments in softare
engineering. That Automatcally generate the experimental plan from an instantaton of a domain model.
METHODOLOGY Informal reviet of models, ontologies and formal representatons for
controlled experiments. Meta-model based on the reviet. Microsof DSL Tools to create the DSL and its related torkbench.
META-MODEL
LANGUAGE WORKBENCH ELEMENTS PALLETE EXPERIMENT MODEL
LANGUAGE WORKBENCH Parameter Hypothesis Dependent Variable Tratment Factor Experiment Validity
Goal Queston Metric
GENERATED DOCUMENT
DOCUMENT PARTS
CONCLUSION ESEML is the kickof to a major initatve for
defne a platorm of empirical studies in softare engineering.
FUTURE WORK Automatcally generaton of artfacts to collect data and
execute experiments. Systematc reviet to more accurate meta-model . Empirical evaluaton of ESEML.
?