Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ESEML: Empirical Softare Engineering Modeling L...
Search
Bruno Cartaxo
October 22, 2012
Research
0
74
ESEML: Empirical Softare Engineering Modeling Language
Bruno Cartaxo
October 22, 2012
Tweet
Share
More Decks by Bruno Cartaxo
See All by Bruno Cartaxo
Mestrado e Doutorado em Computação - UTFPR
brunocartaxo
0
24
Mestrado e Doutorado - Tempest
brunocartaxo
0
28
MESTRADO E DOUTORADO: Que danado é isso? Devo fazer?
brunocartaxo
0
74
RAPID REVIEW IN SOFTWARE ENGINEERING: Making Scientific Evidence Relevant To Practitioners
brunocartaxo
0
48
Rapid Reviews in Software Engineering
brunocartaxo
0
72
DO BRASIL À CHINA, PASSANDO POR CINCO CONTINENTES: COMO PESQUISAR ME ABRIU AS PORTAS PARA O MUNDO
brunocartaxo
0
46
SOFTWARE ENGINEERING RESEARCH COMMUNITY VIEWPOINTS ON RAPID REVIEWS
brunocartaxo
1
160
KNOWLEDGE AND TECHNOLOGY TRANSFER BETWEEN RESEARCH AND PRACTICE IN SOFTWARE ENGINEERING - LINE OF RESEARCH AND VISIONS
brunocartaxo
1
70
O Impacto das Novas Tecnologias na Prática Jurídica
brunocartaxo
0
210
Other Decks in Research
See All in Research
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
370
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
500
超高速データサイエンス
matsui_528
1
310
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1k
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
450
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
740
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
510
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
120
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
17
8.5k
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
340
財務諸表監査のための逐次検定
masakat0
0
210
Featured
See All Featured
Bash Introduction
62gerente
615
210k
How GitHub (no longer) Works
holman
316
140k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
GraphQLとの向き合い方2022年版
quramy
50
14k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
For a Future-Friendly Web
brad_frost
180
10k
Transcript
ESEML Empirical Softare Engineering Modeling Language Bruno Cartaxo [
[email protected]
] Ítalo
Costa [
[email protected]
] Dhiego Martns [
[email protected]
] André Santos [
[email protected]
] Sérgio Soares [
[email protected]
] Vinícius Garcia [
[email protected]
]
MOTIVATION Researches in Softare Engineering normally proposes net practces to
increase productvity and quality. A great part of these researches fail to present empirical evidence.
EMPIRICAL SOFTWARE ENGINEERING There are several types of empirical studies.
Such as, surveys, case studies, secondary studies, acton research and controlled experiments.
CONTROLLED EXPERIMENTS According to Sjoberg only 1.9% of artcles has
a controlled experiment and the quality is not very high. With Experiment s Without Experiment
CONTROLLED EXPERIMENTS Wide range of skills is necessary to conduct
experiments that ofen create a barrier for adoptng it. Skills in terminology, statstcs knot hot and expertse in experimental design.
OBJECTIVE Facilitate the modeling process and defniton of an experimental
plan. By mitgatng social barriers betteen stakeholders. Such as statstcians, experiments designers, and domain experts.
PROPOSAL DSLs are efcient to model specifc domains + Controlled
experiments have their specifc domain elements = ESEML guides controlled experiments modeling in softare engineering and reduces social barriers
ESEML A visual DSL for modeling controlled experiments in softare
engineering. That Automatcally generate the experimental plan from an instantaton of a domain model.
METHODOLOGY Informal reviet of models, ontologies and formal representatons for
controlled experiments. Meta-model based on the reviet. Microsof DSL Tools to create the DSL and its related torkbench.
META-MODEL
LANGUAGE WORKBENCH ELEMENTS PALLETE EXPERIMENT MODEL
LANGUAGE WORKBENCH Parameter Hypothesis Dependent Variable Tratment Factor Experiment Validity
Goal Queston Metric
GENERATED DOCUMENT
DOCUMENT PARTS
CONCLUSION ESEML is the kickof to a major initatve for
defne a platorm of empirical studies in softare engineering.
FUTURE WORK Automatcally generaton of artfacts to collect data and
execute experiments. Systematc reviet to more accurate meta-model . Empirical evaluaton of ESEML.
?