Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ESEML: Empirical Softare Engineering Modeling L...
Search
Bruno Cartaxo
October 22, 2012
Research
0
71
ESEML: Empirical Softare Engineering Modeling Language
Bruno Cartaxo
October 22, 2012
Tweet
Share
More Decks by Bruno Cartaxo
See All by Bruno Cartaxo
Mestrado e Doutorado em Computação - UTFPR
brunocartaxo
0
21
Mestrado e Doutorado - Tempest
brunocartaxo
0
27
MESTRADO E DOUTORADO: Que danado é isso? Devo fazer?
brunocartaxo
0
71
RAPID REVIEW IN SOFTWARE ENGINEERING: Making Scientific Evidence Relevant To Practitioners
brunocartaxo
0
47
Rapid Reviews in Software Engineering
brunocartaxo
0
70
DO BRASIL À CHINA, PASSANDO POR CINCO CONTINENTES: COMO PESQUISAR ME ABRIU AS PORTAS PARA O MUNDO
brunocartaxo
0
44
SOFTWARE ENGINEERING RESEARCH COMMUNITY VIEWPOINTS ON RAPID REVIEWS
brunocartaxo
1
150
KNOWLEDGE AND TECHNOLOGY TRANSFER BETWEEN RESEARCH AND PRACTICE IN SOFTWARE ENGINEERING - LINE OF RESEARCH AND VISIONS
brunocartaxo
1
68
O Impacto das Novas Tecnologias na Prática Jurídica
brunocartaxo
0
200
Other Decks in Research
See All in Research
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
800
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
410
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
510
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
990
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
270
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
0
170
【緊急警告】日本の未来設計図 ~沈没か、再生か。国民と断行するラストチャンス~
yuutakasan
0
150
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
3.5k
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
300
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
950
数理最適化に基づく制御
mickey_kubo
6
730
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Producing Creativity
orderedlist
PRO
347
40k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
Code Review Best Practice
trishagee
70
19k
KATA
mclloyd
32
14k
A designer walks into a library…
pauljervisheath
207
24k
Scaling GitHub
holman
463
140k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Transcript
ESEML Empirical Softare Engineering Modeling Language Bruno Cartaxo [
[email protected]
] Ítalo
Costa [
[email protected]
] Dhiego Martns [
[email protected]
] André Santos [
[email protected]
] Sérgio Soares [
[email protected]
] Vinícius Garcia [
[email protected]
]
MOTIVATION Researches in Softare Engineering normally proposes net practces to
increase productvity and quality. A great part of these researches fail to present empirical evidence.
EMPIRICAL SOFTWARE ENGINEERING There are several types of empirical studies.
Such as, surveys, case studies, secondary studies, acton research and controlled experiments.
CONTROLLED EXPERIMENTS According to Sjoberg only 1.9% of artcles has
a controlled experiment and the quality is not very high. With Experiment s Without Experiment
CONTROLLED EXPERIMENTS Wide range of skills is necessary to conduct
experiments that ofen create a barrier for adoptng it. Skills in terminology, statstcs knot hot and expertse in experimental design.
OBJECTIVE Facilitate the modeling process and defniton of an experimental
plan. By mitgatng social barriers betteen stakeholders. Such as statstcians, experiments designers, and domain experts.
PROPOSAL DSLs are efcient to model specifc domains + Controlled
experiments have their specifc domain elements = ESEML guides controlled experiments modeling in softare engineering and reduces social barriers
ESEML A visual DSL for modeling controlled experiments in softare
engineering. That Automatcally generate the experimental plan from an instantaton of a domain model.
METHODOLOGY Informal reviet of models, ontologies and formal representatons for
controlled experiments. Meta-model based on the reviet. Microsof DSL Tools to create the DSL and its related torkbench.
META-MODEL
LANGUAGE WORKBENCH ELEMENTS PALLETE EXPERIMENT MODEL
LANGUAGE WORKBENCH Parameter Hypothesis Dependent Variable Tratment Factor Experiment Validity
Goal Queston Metric
GENERATED DOCUMENT
DOCUMENT PARTS
CONCLUSION ESEML is the kickof to a major initatve for
defne a platorm of empirical studies in softare engineering.
FUTURE WORK Automatcally generaton of artfacts to collect data and
execute experiments. Systematc reviet to more accurate meta-model . Empirical evaluaton of ESEML.
?