Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ぶんちん流データサイエンス教育のコンセプト
Search
ぶんちん
October 05, 2023
Education
0
290
ぶんちん流データサイエンス教育のコンセプト
ぶんちん
October 05, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
LTのはじめかた(VRChat技術系界隈を想定)
bunnchinn3
0
40
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
97
“成果”を出すためのプレゼン準備 プレゼン資料作成の前にやること
bunnchinn3
1
190
良書紹介03_ データ分析読解の技術
bunnchinn3
0
50
MVP未満からの成果獲得
bunnchinn3
0
55
個人計画とプロジェクト遂行の考え方
bunnchinn3
0
71
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
95
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
78
統計知識と実務のギャップ
bunnchinn3
0
130
Other Decks in Education
See All in Education
俺と地方勉強会 - KomeKaigi・地方勉強会への期待 -
pharaohkj
1
1.5k
沖ハック~のみぞうさんとハッキングチャレンジ☆~
nomizone
1
510
Sanapilvet opetuksessa
matleenalaakso
0
34k
今までのやり方でやってみよう!?~今までのやり方でやってみよう!?~
kanamitsu
0
220
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
140
RSJ2025 ランチョンセミナー 一歩ずつ世界へ:学生・若手研究者のための等身大の国際化の始め方
t_inamura
0
340
20250830_本社にみんなの公園を作ってみた
yoneyan
0
170
2024-2025 CBT top items
cbtlibrary
0
140
今の私を形作る4つの要素と偶然の出会い(セレンディピティ)
mamohacy
2
120
「実践的探究」を志向する日本の教育研究における近年の展開 /jera2025
kiriem
0
150
焦りと不安を、技術力に変える方法 - 新卒iOSエンジニアの失敗談と成長のフレームワーク
hypebeans
1
580
Featured
See All Featured
The Language of Interfaces
destraynor
162
25k
How STYLIGHT went responsive
nonsquared
100
5.9k
GraphQLとの向き合い方2022年版
quramy
50
14k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
We Have a Design System, Now What?
morganepeng
54
7.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
For a Future-Friendly Web
brad_frost
180
10k
Automating Front-end Workflow
addyosmani
1371
200k
KATA
mclloyd
PRO
32
15k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Transcript
ぶんちん流 データサイエンス教育 基本コンセプト ぶんちん 2023年10月5日 データサイエンティスト集会 in VRC 1 私の仕事紹介
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、
成果が増えるのでは 特に非専門家向けのDS教育 2
よくある社員向け教育の勘違い 専門的な講習・教育を受けさせた! 高度な技術習得で即戦力! 組織として将来安泰! 3 現実はそんなに甘くない エライ人
外部組織
従来型教育の課題 4 基礎統計? データサイエンス? 外部講師 だから何なの? 役に立たない 業務内容と 合わない 使い道が
わからない 大きなコストをかけたにも関わらず、ほとんど成果につながらない 適用できる 綺麗なデータがない
教育コンセプトの見直し 5 技術知識 規模重視 実務能力 歩留重視 技術知識 規模重視 実務能力 歩留重視
• 講習会形式で学ぶ • 知識面の”技術”指導が中心 • 教育の達成目標が抽象的 従来:初級者向け研修 新規案:実務研修 • 自身の業務課題をOJT形式で取り組む • 業務面の”技能”指導が中心 • 基本的な業務遂行が可能で、不足する技術 は自身で学習したり専門家と連携できると いった実務能力(が身についた自信)の獲 得を目標 対象者:別分野の専門家
指導カリキュラム <前半> メインコンテンツ 重要! データ分析ツールによるGUIによるデータ可視化 コーディングによるデータも網羅的な可視化 これまで使えてこれなかったデータの特徴量化
追加した特徴量を合わせた網羅的なデータの探索 業務適用 <後半> おまけ 機械学習の基本的な知識に関する講習 機械学習モデルの作成・評価体験 実課題に対して機械学習を適用検討 6 小規模でも確実な成果 機械学習 安直な認識を叩き潰す
基本的な手法 • そこそこの性能 • 使いやすい 少し高度な手法 • 性能向上 • デメリット追加
高度な手法 • さらに性能向上 • さらなるデメリット データサイエンス技術適用の構造 7 高度な手法は基本的な手法の 単純な上位互換ではない! 課題 技術的に高度になるほど扱いづらくなっていく →案件ごとに全体最適のバランス調整が重要 座学だけでの指導は無理
実課題を使った高速課題解決ループ 残課題の 具体化 対応指導 課題対応 8 品質不良の要因分析系テーマ 1. 楽にデータ可視化したい →データ分析ツールの使い方指導
2. 一気にデータを可視化したい →簡単なコーディング 3. 大量のデータを見切れない →見るデータの優先度の決め方 ・・・ 予測モデルによる業務支援テーマ 1. 何をしたら良いかわからない →業務フローの整理 2. 何ができるかわからない →類似事例を表示しては? 3. 類似の定義は? →単純な方法から ・・・ 受講生自身の担当課題を使ったOJT教育 実際はもっと 細分化して実施 超絶基本的な段階から とにかく高速にまわす 重点的に強化
DS教育の評価 成果 受講者全員が自身の業務で活用可能な能力習得 不足する技術は自走して習得可能 課題 OJT教育しかないから規模の拡大が困難 習得能力が地味で、従来教育に受講生を取られがち 9