Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
キャディでのApache Iceberg, Trino採用事例 -Apache Iceberg...
Search
[email protected]
June 19, 2025
Technology
0
320
キャディでのApache Iceberg, Trino採用事例 -Apache Iceberg and Trino Usecase in CADDi--
2025年6月18日に開催されたIceberg Japan Metup# 2でエンジニアの前多が発表した資料です
[email protected]
June 19, 2025
Tweet
Share
More Decks by
[email protected]
See All by
[email protected]
製造業の会計システムをDDDで開発した話
caddi_eng
3
1.7k
【CADDI VIETNAM】Company Deck for Engineers
caddi_eng
0
1.3k
CADDi Company Deck_Global.pdf
caddi_eng
1
430
[ English ] Company Overview for Engineers
caddi_eng
1
7.2k
エンジニア向け会社紹介資料
caddi_eng
17
540k
キャディ株式会社 会社紹介・採用説明資料
caddi_eng
12
1.1M
機械学習チームのモノレポ移行
caddi_eng
0
670
BtoB SaaS を支える 認証認可基盤の設計
caddi_eng
0
1.4k
2023.01_CADDi Thailand Company Overview
caddi_eng
0
15k
Other Decks in Technology
See All in Technology
Agent Development Kitで始める生成 AI エージェント実践開発
danishi
0
160
事業特性から逆算したインフラ設計
upsider_tech
0
180
モノレポにおけるエラー管理 ~Runbook自動生成とチームメンションの最適化
biwashi
0
290
【OptimizationNight】数理最適化のラストワンマイルとしてのUIUX
brainpadpr
2
530
AIに目を奪われすぎて、周りの困っている人間が見えなくなっていませんか?
cap120
1
690
夏休みWebアプリパフォーマンス相談室/web-app-performance-on-radio
hachi_eiji
0
260
MCP認可の現在地と自律型エージェント対応に向けた課題 / MCP Authorization Today and Challenges to Support Autonomous Agents
yokawasa
5
2.5k
Exadata Database Service on Dedicated Infrastructure セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
1
310
Lambda management with ecspresso and Terraform
ijin
2
170
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
29
14k
「Roblox」の開発環境とその効率化 ~DAU9700万人超の巨大プラットフォームの開発 事始め~
keitatanji
0
140
メルカリIBIS:AIが拓く次世代インシデント対応
0gm
2
420
Featured
See All Featured
Become a Pro
speakerdeck
PRO
29
5.5k
How STYLIGHT went responsive
nonsquared
100
5.7k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Rails Girls Zürich Keynote
gr2m
95
14k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
YesSQL, Process and Tooling at Scale
rocio
173
14k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Designing for humans not robots
tammielis
253
25k
Transcript
© CADDi Inc. © CADDi Inc. キャディでの Apache Iceberg, Trino採⽤事例
- Apache Iceberg and Trino Usecese in CADDi - Kentaro Maeda Iceberg Japan Meetup #2 2025/06/18 1
© CADDi Inc. 2 About Me Kentaro Maeda • X:
@kencharos • Software Engineer at CADDi ◦ Java, Go, k8s, Istio, envoy • お酒と⽝
© CADDi Inc. 3 About CADDi エンジニア向け紹介資料 - Speaker Deckより
© CADDi Inc. 4 Theme 私たちは、2024年の秋からApache Iceberg, Trinoを中核としたデータ活⽤サー ビスを開発しています Apache
Iceberg, Trinoをスモールスタートで運⽤している事例についてお伝えし ます
© CADDi Inc. 5 Contents • 製造業で扱うデータの複雑さ • Apache Iceberg
と Trinoの採⽤ • 開発中の困りごととその解決策 • 今後の展望
© CADDi Inc. 6 製造業で扱うデータの複雑さ
© CADDi Inc. 製造業で扱うデータは多種多様 会社ごとに扱うデータの種類、フォーマット、サイズなどは異なる。 7 分類 具体例 構造化データ •
実績データ(見積実績、受注実績、発注実績、製造実績、検査実績、出荷実績、 請求実績、在庫実績など • マスタデータ(顧客情報、製品、仕入れ先、工程、設備情報、検査器具、チャージ など) 半構造化データ • CAD 非構造化データ • 図面 • 写真 • 文書(仕様書、マニュアル、不具合報告書、議事録など )
© CADDi Inc. データ活⽤のためには解析と関連付けが必要 • データを集めるだけで、データを検索できないのでは活⽤はできない • 検索‧分析できる状態までデータを解析して蓄積する必要がある • 蓄積したデータ同⼠を関連付けることで、企業活動を促進する
データの分析と関連付けのために、データを蓄積する基盤が必要であると考えた 8
© CADDi Inc. 9 Apache Iceberg と Trinoの採⽤
© CADDi Inc. 何を作るのか? • まずは構造化データの登録と関連付けに着⽬ • 顧客が任意のデータをアップロードし、データを登録する • 図⾯登録データとの関連付けを設定し、図⾯と⼀緒に関連データとして表⽰する
10 図⾯登録 データ 登録済み データ 図⾯ 任意の データ 関連付け データ
© CADDi Inc. Iceberg, Trinoを選んだ理由 • タイミングが良かった ◦ 開発を始めた頃にIcebergと周辺技術が成熟してきていた •
従来のデータ基盤技術と⽐較して、運⽤しやすい構成 ◦ オブジェクトストレージ+クエリエンジン、HDFSのようなストレージの運⽤が不要 • ある程度のクセはあるが、CRUDができるデータフォーマット • スケールしやすい構成 ◦ ⼤量データでなくても低コストストレージと、クエリエンジンのスケールによって コストを抑えやすい • 現在はTrinoのみだが、⽤途に応じてクエリエンジンを使い分けることができる 11
© CADDi Inc. その他の技術選定の候補 • いくつかの候補を挙げたが、仮説検証の速さ、構成変更のしやすさ、コストやデータサイズが 増えた場合の影響などを重視して決定した 12 製品 メリット
デメリット RDBMS 扱いやすさ データサイズ拡大時のコストとパフォーマンス BigQuery マネージドサービス 大規模でも扱える コスト見積もりが困難 DuckDB 導入が容易 サーバーアプリケーション向きではない Apache Spark 大規模データの参照・編集に すぐれる 今回はデータの参照中心の要件であるため、運用が 楽なTrinoを採用(将来の採用はあり得る ) 有償製品 豊富な機能、サポート 仮説検証時点では調達リードタイム等を考慮して見 送り(将来の採用はあり得る )
© CADDi Inc. アプリケーションの構成 GKE上に主要なアプリケーションを全て構築 主要な開発⾔語はJava, フレームワークはQuarkus 13
© CADDi Inc. 14 開発中の困りごととその解決策
© CADDi Inc. Iceberg Catalog選定問題 • 開発当時(2024年秋), Icebergの Catalogについてはhiveが基本でREST Catalog
はこれから標準 になっていくという雰囲気 • 当初はGoogle Cloud Dataproc Metastore を使う想定だったが、以下の理由によって諦めた ◦ Icebergのみを使うのにhive metastore を使うのは学習コストが⾼い ◦ 認証認可をやるには Kerberosの運⽤が必要になりそう • 将来移⾏するリスクを飲む前提で、tabulario/iceberg-rest (現在は iceberg-rest-fixture)と RDBMSを採⽤ • REST Catalogは現時点でも⾊々な選択肢があるので、今後の動向を⾒守っている ◦ Google Cloudの BigQuery Metastoreにも期待 15
© CADDi Inc. ⼤量データ投⼊が遅い問題 • 性能テストで1000万件以上のデータ投⼊のために、Trinoからデータ投⼊をしていたら2⽇か かっても終わらなかった • IcebergのJava API
を使って、Trinoを介さず直接データを書き込むようにした ◦ おおよそ 1000万件を 15分で処理できるように ◦ アップロードファイル単位のコミット制御も可能になった ◦ 詳しくは -> https://caddi.tech/2025/03/31/114754 • リリース開始後に数百万件の実データ投⼊の要件が発⽣したので、アプリケーションの登録 処理にも流⽤して効率をあげた ◦ 今後はPyIcebergや Sparkなども試していきたい 16
© CADDi Inc. 17 今後の展望
© CADDi Inc. 今後の展望 製造業AIデータプラットフォームCADDiを⽀えるデータ基盤として機能と品質を充実させ ていく • セキュリティ、認証認可の強化 • データカタログなどデータ基盤としての機能の拡充
• データパイプラインや⾃動メンテナンスなどの⾮機能の充実 18
© CADDi Inc. まとめ • スモールスタートからでもIceberg, Trinoは⾃分たちで制御可能なデータ基盤技術 ◦ 簡単ではないが、ものすごく複雑でもない ◦
これまでのデータ基盤技術の集⼤成だと感じる • エコシステムがこれからも充実していきそうなIcebergにこれからも注⽬していきた い 19
© CADDi Inc. © CADDi Inc. 20 終わり