Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
5分でわかるDuckDB
Search
chanyou0311
December 14, 2024
Technology
11
4.1k
5分でわかるDuckDB
「合同勉強会 in 大都会岡山 -2024 Winter-」の発表資料です。
https://gbdaitokai.connpass.com/event/330065/
chanyou0311
December 14, 2024
Tweet
Share
More Decks by chanyou0311
See All by chanyou0311
データエンジニアリング領域におけるDuckDBのユースケース
chanyou0311
9
3.4k
データプロダクトの定義からはじめる、データコントラクト駆動なデータ基盤
chanyou0311
3
1.5k
データの信頼性を支える仕組みと技術
chanyou0311
6
2.2k
Pulumi に入門してみた
chanyou0311
1
310
What is DRE? - Road to SRE NEXT@広島
chanyou0311
3
1.1k
release-please で実現する手軽で不変な Docker イメージタグ付け方法
chanyou0311
0
400
データ基盤を支える技術
chanyou0311
9
4.3k
おうちk8s入門 - すごい広島 IT初心者の会 [84]
chanyou0311
1
370
オンラインコミュニケーションの課題と、その乗り越え方
chanyou0311
0
540
Other Decks in Technology
See All in Technology
Understanding_Thread_Tuning_for_Inference_Servers_of_Deep_Models.pdf
lycorptech_jp
PRO
0
140
「Chatwork」の認証基盤の移行とログ活用によるプロダクト改善
kubell_hr
1
220
asken AI勉強会(Android)
tadashi_sato
0
110
Yamla: Rustでつくるリアルタイム性を追求した機械学習基盤 / Yamla: A Rust-Based Machine Learning Platform Pursuing Real-Time Capabilities
lycorptech_jp
PRO
4
150
自律的なスケーリング手法FASTにおけるVPoEとしてのアカウンタビリティ / dev-productivity-con-2025
yoshikiiida
0
120
生成AI開発案件におけるClineの業務活用事例とTips
shinya337
0
130
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ #1 量子機械学習の入門
tkhresk
0
140
rubygem開発で鍛える設計力
joker1007
2
220
AWS Summit Japan 2025 Community Stage - App workflow automation by AWS Step Functions
matsuihidetoshi
1
300
Microsoft Build 2025 技術/製品動向 for Microsoft Startup Tech Community
torumakabe
2
310
Geminiとv0による高速プロトタイピング
shinya337
0
140
変化する開発、進化する体系時代に適応するソフトウェアエンジニアの知識と考え方(JaSST'25 Kansai)
mizunori
1
240
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
49
14k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
Faster Mobile Websites
deanohume
307
31k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Writing Fast Ruby
sferik
628
62k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Optimizing for Happiness
mojombo
379
70k
VelocityConf: Rendering Performance Case Studies
addyosmani
331
24k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Designing for Performance
lara
609
69k
The Invisible Side of Design
smashingmag
300
51k
Transcript
5分でわかるDuckDB 合同勉強会 in ⼤都会岡⼭ -2024 Winter- chanyou
Yu Nakamura - chanyou ‧ 広島在住でリモートワークしてます ‧📊 普段は事業会社でデータ基盤を作っています ‧🐍 Python
とか Google Cloud とかよく使っています ‧🍓 おうち Kubernetes クラスタ ‧📢 mutable.stream という Podcast を2年くらい?
DuckDB 使ったことあるよ 🙋
DuckDB 知らない! 聞いたことあるけどよくわからない 🙋
DuckDB とは?
‧OLAP(オンライン分析処理)特化のDB Engine ‧要はめっちゃ早い ‧SQLite のようなインプロセス型のデータベース ‧⾼いポータビリティが特徴 ‧MIT ライセンスで C++ 実装
DuckDB の特徴 ‧シングルバイナリでセットアップが容易 ‧充実したクライアントAPI ‧豊富な外部データソースの対応と拡張機能
シングルバイナリでセットアップが容易 https://duckdb.org/docs/installation/?version=stable&environment=cli&platform=linux&download_method=direct&architecture=arm64
シングルバイナリでセットアップが容易
充実したクライアントAPI 公式 CLI ODBC API C C++ Java Julia 公式
Python R Rust Swift WebAssembly (Wasm) Node.js コミュニティからも C# Dart Elixir Go Ruby
Pythonだと ‧Pandas, Polars などの DataFrame と相互変換が可能 ‧PySpark にも対応 https://duckdb.org/docs/installation/?version=stable&environment=cli&platform=linux&download_method=direct&architecture=arm64
豊富な外部データソースの読み書きに対応 ‧ SQLite, PostgreSQL, MySQL などの RDBMS ‧ CSV, JSON,
Parquet といったファイル これらに直接クエリできる。 https://duckdb.org/docs/data/parquet/overview.html
豊富な拡張機能‧コミュニティ拡張機能 ‧S3, Azure Blob Storage, GCS などのオブジェクトスト レージ上のファイルの読み書き https://duckdb.org/docs/extensions/httpfs/s3api.html
豊富な拡張機能‧コミュニティ拡張機能 ‧BigQuery, Google Spreadsheet の読み書き ‧地理空間関数、H3関数
DuckDB を取り巻くツール‧サービス ‧dbt-duckdb ‧dbt の DuckDB アダプタ ‧MotherDuck ‧フルマネージド DuckDB
‧BemiDB ‧ PostgreSQL のデータを同期して S3 に書き出す ‧ 内部で DuckDB のクエリエンジンで⾼速にクエリできる
DuckDB のユースケース
オブジェクトストレージへのクエリエンジン ‧主要なオブジェクトストレージ‧ファイル形式に対応して いて、たいていのデータが読み込める
オブジェクトストレージへのクエリエンジン ‧今までも Pandas などで読み込めたが、シングルバイナリ でより⼿軽にデータアクセスできる ‧Athena や BigQuery Omni のようにロックインされない
分散したデータを横断した前処理‧分析 ‧S3, GCSを横断したマルチクラウドな分析も可能 ‧マルチプロダクト環境でスタックが異なっても、 ストレージへの認証さえ通せばほとんど同じクエリで動く ‧組織間のデータ連携でもオブジェクトストレージが使われがち ‧そういった場⾯でも恩恵を受ける
スクリプト内での利⽤(データ品質保証の事例)
スクリプト内での利⽤(データ品質保証の事例) ‧複雑なデータテストを⾏いたい場合やデータそのものを販売し ているケースにおいて、継続的なテストが軽量に実施できる ‧インメモリモードで揮発しても問題ない
セルフホスト型の BI ツールへの統合 ‧アプリケーションに SQLite を組み込むアーキテクチャ ‧同じように BI ツールに DuckDB
を組み込むことで、⾼速化でき そう https://superset.apache.org/
DuckDB の苦⼿なシーン
きめ細かな権限管理への対応が難しい ‧データをオブジェクトストレージに配置して、DuckDB に設定す るシークレットで権限管理する? ‧それでも⾏レベル、列レベルのセキュリティは現時点では実施 できない
SSoT がやりにくい ‧複数のデバイスで DuckDB ファイルを同期できない ‧ちゃんと運⽤ルールを敷かないと、どの DuckDB ファイルが最 新なのか分からなくなる ‧オブジェクトストレージを
SSoT として保持して、DuckDB はク エリエンジンとして割り切って使うのがよさそう
頻繁に更新されるデータの同期には⼯夫が必要 ‧RDB に直接接続するのはあまりやりたくない ‧RDB に SELECT * FROM users クエリ打った結果を
DuckDB テー ブルとして保存してから重い処理をさせる、とかはできる ‧定期的に RDB から fetch するのも体験が悪い ‧デイリーで S3 書き出されるファイルや国勢調査の⼩地域ごとの 結果など、更新頻度の低いデータとの相性がよさそう
ところで なんでアヒル?
Why 🦆DB? DuckDB の FAQ によると… ‧⾶べて、歩けて、泳げる、どこへでも⾏ける! ‧そして雑⾷性で何でも⾷べて、環境変化への耐性が⾼い! そんなアヒルは多⽤途で⾼耐久性を求められる DBMS
のマスコッ トとして完璧 💯
まとめ ‧DuckDB を使うとデータの置き場所や形式を問わず、あらゆる データをサクッとクエリできる ‧⼤規模組織でデータ分析⽤途で使おうとするとガバナンス周り が⼤変だけど、前処理に限定するなどして活⽤できそう ‧すぐ使い始められるので、ぜひ試して⼀緒に知⾒交換しましょう!
おわり 🦆