Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Editing Factual Knowledge in Language Models (E...
Search
Koji Matsuda
September 20, 2022
Research
0
350
Editing Factual Knowledge in Language Models (EMNLP 2021)
Koji Matsuda
September 20, 2022
Tweet
Share
More Decks by Koji Matsuda
See All by Koji Matsuda
SHINRA2020-JP リーダーボードのご案内
conditional
0
170
AI王 〜クイズAI日本一決定戦〜
conditional
0
11k
論文紹介: Neural Relation Extraction for Knowledge Base Enrichment (ACL2019)
conditional
0
420
Training Classifiers with Natural Language Explanations
conditional
0
310
Other Decks in Research
See All in Research
BtoB プロダクトにおけるインサイトマネジメントの必要性 現場ドリブンなカミナシがインサイトマネジメントに取り組むワケ / Why field-driven Kaminashi is working on insight management
kaminashi
1
370
LLM 시대의 Compliance: Safety & Security
huffon
0
630
サーブレシーブ成功率は勝敗に影響するか?
vball_panda
0
600
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
330
SI-D案内資料_京都文教大学
ryojitakeuchi1116
0
790
ことばの意味を計算するしくみ
verypluming
10
2.2k
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
270
ラムダ計算の拡張に基づく 音楽プログラミング言語mimium とそのVMの実装
tomoyanonymous
0
440
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
460
SpectralMamba: Efficient Mamba for Hyperspectral Image Classification
satai
3
250
Weekly AI Agents News! 12月号 プロダクト/ニュースのアーカイブ
masatoto
0
360
A Segment Anything Model based weakly supervised learning method for crop mapping using Sentinel-2 time series images
satai
3
240
Featured
See All Featured
Site-Speed That Sticks
csswizardry
4
460
How to Think Like a Performance Engineer
csswizardry
22
1.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
39
7.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7.1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
The Pragmatic Product Professional
lauravandoore
33
6.5k
Scaling GitHub
holman
459
140k
Transcript
Editing Factual Knowledge in Language Models EMNLP 2021 Nicola De
Cao, Wilker Aziz, Ivan Titov 第14回最先端NLP勉強会 2022/09/27 読み⼿: 松⽥耕史 (理研/東北⼤) 図表は元論⽂からの引⽤です。 1
どんな論⽂︖ • Language Model に内在している Factual Knowledge を編集する • どうやって︖
– パラメータ θ‘ を予測する hyper network g (KnowledgeEditor)を学習する 2
貢献 • Knowledge Editing というタスクを定義、 評価指標も提案 • KnowledgeEditor という⼿法を提案 –
パラメータを予測する NN モデル • KnowledgeEditor の有効性を2つのタス クで確認 – Fact Checking – Question Answering • KnowledgeEditor の書き換え具合を分析 3
モチベーション • LM as KB – Factual Knowledge が パラメータとして暗
にうめこまれている • しかし、間違っていたり obsolete になっ ていたりすることもあるので修正したい こともある • でも、、、コストのかかる再学習はした くない 4
実現したい3要件 • Generality: – いろんなモデルに使える • 本論⽂では BERT, BART に適⽤
• Reliability: – 余計な副作⽤をうまない、編集したい Fact 以外 に影響を与えない • Consistency: – 同じ Fact を問う質問に対して、⼀貫した答えを 返す – ⾔い換えにたいする強さ 5
6
タスク設定 • モデル f(x, θ) があって、 <x,y,a> ∈ D という
書き換えデータがある – y: model の prediction – a: alternative prediction • モデル f のアーキテクチャをたもったまま、 y ではなく a を予測するような f(x, θ‘)を⾒ つけたい – かつ、ほかの x に対する予測は変えない • x の⾔い換えに対しては a を予測するように したい 7
3要件を踏まえた評価指標 • success rate: ↑ – g がどれくらい y から
a に書き換えることがで きたか • retain accuracy: ↑ – その他の(書き換え対象外の)知識をどれくらい残 せたか • equivalence accuracy: ↑ – ⾔い換えに対してロバストに書き換えができたか • performance deterioration: ↓ – 書き換え後のモデルのパフォーマンス低下 8
Method: ハイパーネットワーク • 元のパラメータ θ を 新しいパラメータ θ‘ に書き換えるような NN
g を考える – パラメータ φ 9 x ͔Β a Λ༧ଌ͢Δ Loss Λ࠷খԽ͢Δ φ θ ͔ΒͰ͖Δ͚ͩΕͳ͍ θ’ Λ ༧ଌ͍ͨ͠ɺͱ͍͏੍ Ϛʔδϯ
制約 C について • 素朴には: Lp ノルム: • 提案⼿法: KLダイバージェンス:
10 ύϥϝʔλͷ͕ۙ ͚Εۙ͘ͳΔΑ͏ ੍ Ϟσϧͷग़ྗ͕ ۙ͘ͳΔΑ͏੍
中⾝ • θ‘を直接求めるのではなく、θ‘ = θ + Λθ とおいて Λθを求める •
<x, y, a> を連結して bi-LSTMに⼊れて得 た h を 5層のFFNN に⼊⼒、その勾配を⽤ いてパラメータ差分を計算 – 勾配のゲーティングされた和を⽤いる 11
実験 • Fact Checking – FEVER データセット [Throne et al.
2018] – BERTを⽤いたの2値分類 • Closed-book QA – zsRE データセット [Levy et al. 2017] • ⼈⼿で作った Question Paraphrase が付いてい るのが採⽤ポイント – BARTを⽤いた seq2seq 12
Alternative prediction の⽣成 • Fact Checking: – ラベルを反転させるだけ • Question
Answering: – ビームサーチの Top-1 以外の候補を使って作 る • ⾔い換えの⽣成 – 折返し翻訳を⽤いる 13 ݱ࣮ੈքͰਖ਼͍͔ࣝ͠Ͳ͏͔ؾʹͤͣ࡞͍ͬͯΔ͜ͱʹҙʂ
実験結果 - Fact Checking 14
実験結果 – Question Answering 15
結局どのモデルが総合的に 良いのか︖ • 各指標にランダムな重みを付けて線形和 にして1000回繰り返し総合点を求める – 重み: Dirichlet 分布からのサンプル •
Simplex中の1点 16
Logitの動き 17
モデルのどの部分を書き換えたか 18 εύʔεͳ Update ͕ߦΘΕ͍ͯΔ
まとめ • LMの内部に暗黙的に保存されている factual knowledge を編集するタスクを 提案 • いくつかの評価指標を定義 •
KnowledgeEditorというハイパーネット ワークを提案 19