Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Editing Factual Knowledge in Language Models (E...
Search
Koji Matsuda
September 20, 2022
Research
0
380
Editing Factual Knowledge in Language Models (EMNLP 2021)
Koji Matsuda
September 20, 2022
Tweet
Share
More Decks by Koji Matsuda
See All by Koji Matsuda
SHINRA2020-JP リーダーボードのご案内
conditional
0
200
AI王 〜クイズAI日本一決定戦〜
conditional
0
11k
論文紹介: Neural Relation Extraction for Knowledge Base Enrichment (ACL2019)
conditional
0
460
Training Classifiers with Natural Language Explanations
conditional
0
350
Other Decks in Research
See All in Research
能動適応的実験計画
masakat0
2
970
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
400
財務諸表監査のための逐次検定
masakat0
0
190
Language Models Are Implicitly Continuous
eumesy
PRO
0
330
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
930
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
140
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
220
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
360
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
410
ウェブ・ソーシャルメディア論文読み会 第31回: The rising entropy of English in the attention economy. (Commun Psychology, 2024)
hkefka385
1
110
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
320
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
110
Featured
See All Featured
Code Review Best Practice
trishagee
72
19k
Designing for Performance
lara
610
69k
Become a Pro
speakerdeck
PRO
29
5.6k
Speed Design
sergeychernyshev
32
1.2k
We Have a Design System, Now What?
morganepeng
54
7.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
24
1.6k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6.1k
Transcript
Editing Factual Knowledge in Language Models EMNLP 2021 Nicola De
Cao, Wilker Aziz, Ivan Titov 第14回最先端NLP勉強会 2022/09/27 読み⼿: 松⽥耕史 (理研/東北⼤) 図表は元論⽂からの引⽤です。 1
どんな論⽂︖ • Language Model に内在している Factual Knowledge を編集する • どうやって︖
– パラメータ θ‘ を予測する hyper network g (KnowledgeEditor)を学習する 2
貢献 • Knowledge Editing というタスクを定義、 評価指標も提案 • KnowledgeEditor という⼿法を提案 –
パラメータを予測する NN モデル • KnowledgeEditor の有効性を2つのタス クで確認 – Fact Checking – Question Answering • KnowledgeEditor の書き換え具合を分析 3
モチベーション • LM as KB – Factual Knowledge が パラメータとして暗
にうめこまれている • しかし、間違っていたり obsolete になっ ていたりすることもあるので修正したい こともある • でも、、、コストのかかる再学習はした くない 4
実現したい3要件 • Generality: – いろんなモデルに使える • 本論⽂では BERT, BART に適⽤
• Reliability: – 余計な副作⽤をうまない、編集したい Fact 以外 に影響を与えない • Consistency: – 同じ Fact を問う質問に対して、⼀貫した答えを 返す – ⾔い換えにたいする強さ 5
6
タスク設定 • モデル f(x, θ) があって、 <x,y,a> ∈ D という
書き換えデータがある – y: model の prediction – a: alternative prediction • モデル f のアーキテクチャをたもったまま、 y ではなく a を予測するような f(x, θ‘)を⾒ つけたい – かつ、ほかの x に対する予測は変えない • x の⾔い換えに対しては a を予測するように したい 7
3要件を踏まえた評価指標 • success rate: ↑ – g がどれくらい y から
a に書き換えることがで きたか • retain accuracy: ↑ – その他の(書き換え対象外の)知識をどれくらい残 せたか • equivalence accuracy: ↑ – ⾔い換えに対してロバストに書き換えができたか • performance deterioration: ↓ – 書き換え後のモデルのパフォーマンス低下 8
Method: ハイパーネットワーク • 元のパラメータ θ を 新しいパラメータ θ‘ に書き換えるような NN
g を考える – パラメータ φ 9 x ͔Β a Λ༧ଌ͢Δ Loss Λ࠷খԽ͢Δ φ θ ͔ΒͰ͖Δ͚ͩΕͳ͍ θ’ Λ ༧ଌ͍ͨ͠ɺͱ͍͏੍ Ϛʔδϯ
制約 C について • 素朴には: Lp ノルム: • 提案⼿法: KLダイバージェンス:
10 ύϥϝʔλͷ͕ۙ ͚Εۙ͘ͳΔΑ͏ ੍ Ϟσϧͷग़ྗ͕ ۙ͘ͳΔΑ͏੍
中⾝ • θ‘を直接求めるのではなく、θ‘ = θ + Λθ とおいて Λθを求める •
<x, y, a> を連結して bi-LSTMに⼊れて得 た h を 5層のFFNN に⼊⼒、その勾配を⽤ いてパラメータ差分を計算 – 勾配のゲーティングされた和を⽤いる 11
実験 • Fact Checking – FEVER データセット [Throne et al.
2018] – BERTを⽤いたの2値分類 • Closed-book QA – zsRE データセット [Levy et al. 2017] • ⼈⼿で作った Question Paraphrase が付いてい るのが採⽤ポイント – BARTを⽤いた seq2seq 12
Alternative prediction の⽣成 • Fact Checking: – ラベルを反転させるだけ • Question
Answering: – ビームサーチの Top-1 以外の候補を使って作 る • ⾔い換えの⽣成 – 折返し翻訳を⽤いる 13 ݱ࣮ੈքͰਖ਼͍͔ࣝ͠Ͳ͏͔ؾʹͤͣ࡞͍ͬͯΔ͜ͱʹҙʂ
実験結果 - Fact Checking 14
実験結果 – Question Answering 15
結局どのモデルが総合的に 良いのか︖ • 各指標にランダムな重みを付けて線形和 にして1000回繰り返し総合点を求める – 重み: Dirichlet 分布からのサンプル •
Simplex中の1点 16
Logitの動き 17
モデルのどの部分を書き換えたか 18 εύʔεͳ Update ͕ߦΘΕ͍ͯΔ
まとめ • LMの内部に暗黙的に保存されている factual knowledge を編集するタスクを 提案 • いくつかの評価指標を定義 •
KnowledgeEditorというハイパーネット ワークを提案 19