Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Editing Factual Knowledge in Language Models (E...
Search
Koji Matsuda
September 20, 2022
Research
0
320
Editing Factual Knowledge in Language Models (EMNLP 2021)
Koji Matsuda
September 20, 2022
Tweet
Share
More Decks by Koji Matsuda
See All by Koji Matsuda
SHINRA2020-JP リーダーボードのご案内
conditional
0
150
AI王 〜クイズAI日本一決定戦〜
conditional
0
11k
論文紹介: Neural Relation Extraction for Knowledge Base Enrichment (ACL2019)
conditional
0
380
Training Classifiers with Natural Language Explanations
conditional
0
290
Other Decks in Research
See All in Research
12
0325
0
190
Weekly AI Agents News! 7月号 プロダクト/ニュースのアーカイブ
masatoto
0
160
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
140
クラウドソーシングによる学習データ作成と品質管理(セキュリティキャンプ2024全国大会D2講義資料)
takumi1001
0
290
大規模言語モデルを用いた日本語視覚言語モデルの評価方法とベースラインモデルの提案 【MIRU 2024】
kentosasaki
2
520
TransformerによるBEV Perception
hf149
1
430
3次元点群の分類における評価指標について
kentaitakura
0
410
20240820: Minimum Bayes Risk Decoding for High-Quality Text Generation Beyond High-Probability Text
de9uch1
0
120
日本語医療LLM評価ベンチマークの構築と性能分析
fta98
3
640
Whoisの闇
hirachan
3
140
129 2 th
0325
0
240
marukotenant01/tenant-20240916
marketing2024
0
500
Featured
See All Featured
Building Your Own Lightsaber
phodgson
103
6.1k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
860
The Cost Of JavaScript in 2023
addyosmani
45
6.7k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
GraphQLとの向き合い方2022年版
quramy
43
13k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
120
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Gamification - CAS2011
davidbonilla
80
5k
Transcript
Editing Factual Knowledge in Language Models EMNLP 2021 Nicola De
Cao, Wilker Aziz, Ivan Titov 第14回最先端NLP勉強会 2022/09/27 読み⼿: 松⽥耕史 (理研/東北⼤) 図表は元論⽂からの引⽤です。 1
どんな論⽂︖ • Language Model に内在している Factual Knowledge を編集する • どうやって︖
– パラメータ θ‘ を予測する hyper network g (KnowledgeEditor)を学習する 2
貢献 • Knowledge Editing というタスクを定義、 評価指標も提案 • KnowledgeEditor という⼿法を提案 –
パラメータを予測する NN モデル • KnowledgeEditor の有効性を2つのタス クで確認 – Fact Checking – Question Answering • KnowledgeEditor の書き換え具合を分析 3
モチベーション • LM as KB – Factual Knowledge が パラメータとして暗
にうめこまれている • しかし、間違っていたり obsolete になっ ていたりすることもあるので修正したい こともある • でも、、、コストのかかる再学習はした くない 4
実現したい3要件 • Generality: – いろんなモデルに使える • 本論⽂では BERT, BART に適⽤
• Reliability: – 余計な副作⽤をうまない、編集したい Fact 以外 に影響を与えない • Consistency: – 同じ Fact を問う質問に対して、⼀貫した答えを 返す – ⾔い換えにたいする強さ 5
6
タスク設定 • モデル f(x, θ) があって、 <x,y,a> ∈ D という
書き換えデータがある – y: model の prediction – a: alternative prediction • モデル f のアーキテクチャをたもったまま、 y ではなく a を予測するような f(x, θ‘)を⾒ つけたい – かつ、ほかの x に対する予測は変えない • x の⾔い換えに対しては a を予測するように したい 7
3要件を踏まえた評価指標 • success rate: ↑ – g がどれくらい y から
a に書き換えることがで きたか • retain accuracy: ↑ – その他の(書き換え対象外の)知識をどれくらい残 せたか • equivalence accuracy: ↑ – ⾔い換えに対してロバストに書き換えができたか • performance deterioration: ↓ – 書き換え後のモデルのパフォーマンス低下 8
Method: ハイパーネットワーク • 元のパラメータ θ を 新しいパラメータ θ‘ に書き換えるような NN
g を考える – パラメータ φ 9 x ͔Β a Λ༧ଌ͢Δ Loss Λ࠷খԽ͢Δ φ θ ͔ΒͰ͖Δ͚ͩΕͳ͍ θ’ Λ ༧ଌ͍ͨ͠ɺͱ͍͏੍ Ϛʔδϯ
制約 C について • 素朴には: Lp ノルム: • 提案⼿法: KLダイバージェンス:
10 ύϥϝʔλͷ͕ۙ ͚Εۙ͘ͳΔΑ͏ ੍ Ϟσϧͷग़ྗ͕ ۙ͘ͳΔΑ͏੍
中⾝ • θ‘を直接求めるのではなく、θ‘ = θ + Λθ とおいて Λθを求める •
<x, y, a> を連結して bi-LSTMに⼊れて得 た h を 5層のFFNN に⼊⼒、その勾配を⽤ いてパラメータ差分を計算 – 勾配のゲーティングされた和を⽤いる 11
実験 • Fact Checking – FEVER データセット [Throne et al.
2018] – BERTを⽤いたの2値分類 • Closed-book QA – zsRE データセット [Levy et al. 2017] • ⼈⼿で作った Question Paraphrase が付いてい るのが採⽤ポイント – BARTを⽤いた seq2seq 12
Alternative prediction の⽣成 • Fact Checking: – ラベルを反転させるだけ • Question
Answering: – ビームサーチの Top-1 以外の候補を使って作 る • ⾔い換えの⽣成 – 折返し翻訳を⽤いる 13 ݱ࣮ੈքͰਖ਼͍͔ࣝ͠Ͳ͏͔ؾʹͤͣ࡞͍ͬͯΔ͜ͱʹҙʂ
実験結果 - Fact Checking 14
実験結果 – Question Answering 15
結局どのモデルが総合的に 良いのか︖ • 各指標にランダムな重みを付けて線形和 にして1000回繰り返し総合点を求める – 重み: Dirichlet 分布からのサンプル •
Simplex中の1点 16
Logitの動き 17
モデルのどの部分を書き換えたか 18 εύʔεͳ Update ͕ߦΘΕ͍ͯΔ
まとめ • LMの内部に暗黙的に保存されている factual knowledge を編集するタスクを 提案 • いくつかの評価指標を定義 •
KnowledgeEditorというハイパーネット ワークを提案 19