Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My_lightning_talk_at_data_learning_guild_s_1st_...
Search
banquet.kuma
July 23, 2020
Business
1
790
My_lightning_talk_at_data_learning_guild_s_1st_anniversary_event.pdf
データ分析界隈に転職してから1年間のことを
データラーニングギルドの1周年記念イベントで話しました。
banquet.kuma
July 23, 2020
Tweet
Share
More Decks by banquet.kuma
See All by banquet.kuma
Amazon Q Developer CLIをClaude Codeから使うためのベストプラクティスを考えてみた
dar_kuma_san
0
340
彼女を励ますために、Azure OpenAI Serviceを使って、kmakici LINE bot を作った
dar_kuma_san
0
170
面倒なことは、 Azure OpenAI Service× Power Automateにやらせよう!
dar_kuma_san
0
230
データで振り返るデータラーニングギルド【基礎集計の部】
dar_kuma_san
0
2.5k
Deep Learning 1 (Chapter 6)
dar_kuma_san
0
730
Deep Learning 1 (Chapter 4 , Chapter 5)
dar_kuma_san
0
510
Deep Learning 1 (Chapter 2 , Chapter 3)
dar_kuma_san
0
710
I started learning Data Science.
dar_kuma_san
0
910
Python始めて半年で感じたこと/I’ve recently started to learn Python.
dar_kuma_san
0
290
Other Decks in Business
See All in Business
Mico_New_graduate_2027.pdf
micoinc
0
110
三井物産グループのデジタル証券〜ザ ロイヤルパークホテル 東京汐留〜再販売②徹底解説セミナースライド(20251008)
c0rp_mdm
PRO
1
460
株式会社パブリックテクノロジーズ | Company Deck 2025
takuhosakai
0
120
20251012_社内でのMCT活動
ponponmikankan
1
900
株式会社ネイチャーズウェイ会社説明資料
naturesway
1
2.9k
Recept_Culture deck
shokennakase
0
460
【27新卒フィールドセールス職採用】BuySell Technologies会社紹介資料
buyselltechnologies
0
250k
【APTO】サービス紹介資料(2025年10月)
recruit_
0
110
気がついたら エンジニアになっていた??? 新卒エンジニアになるまで編
koinunopochi
0
120
Gemini と NotebookLM を組み合わせて 目標設定の負荷を軽減する方法 / Goal setting with gemini and notebooklm
tbpgr
21
40k
Sales Marker Culture Book(English)
salesmarker
PRO
2
6.9k
株式会社ドリコム_事業計画及び成長可能性に関する説明資料
drecom_hr
0
5.4k
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Designing for Performance
lara
610
69k
Bash Introduction
62gerente
615
210k
Building an army of robots
kneath
306
46k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
A better future with KSS
kneath
239
18k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
950
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
640
Transcript
この1年データ分析界隈で やったことと今後の戦略 データラーニングギルド 1周年記念LT
自己紹介 年齢:34 学歴:応用物理学修士 職歴:大手電機(生産技術) →半導体ベンチャー(生産技術) →データ分析系SES(?) twitter:@dar_kuma_san
昨年8月に、完全未経験からデータ分析業に転職しました。 転職までの話は割愛します。 こちらの記事を参照下さい。 https://qiita.com/banquet_kuma/items/7d44d0e777bcc5ac8b67
転職後に行動したことと、 現在の状況(with コロナ)を話します これからキャリアチェンジを考えている方の 参考になれば幸いです ※あくまで私のモデルケースなので、一般論ではないです。 話半分に聞いてください。
1年表 時期 イベント 学習したこと 意識したこと 感情 2019/8 キャリアチェンジ ・統計 ・Python
特になし とりあえず、走り出した のでやるしかない 2019/9 自習期間 2019/10 研修期間 統計検定2級取得 Python3エンジニア試験 ・数学、統計 ・R、Python、SQL ・機械学習、 多変量解析 ・CRISP-DM ・プレゼンスキル ・テストで良い点を取る ・積極的に手を挙げる ・予習復習 会社以外の学びで差別化 したい(DLGの活用) 2019/11 2019/12 2020/1 2020/2~3 実務 (前処理ツールの開発) ・自然言語処理 ・Python自動化 プログラミング データ分析力よりも ビジネススキルを意識 分析スキルよりも ビジネススキルを求めら れているな 2020/4~6 自宅待機期間 (=自習期間) 色々 モチベーションの維持に DLGを活用 この先仕事があるのか 不安 2020/7~ 実務 (製造業のデータ分析) ドメイン知識 (現状、ほとんどこ れに費やしている) ・ドメイン知識を推す ・ドメンチ知識にキャッ チアップする ・積極的に発言する ・業務内外を分けない 経験値が上がることは なんでもやりたい ここからが勝負
一案件目の心得(2020/2~2020/3) 初案件では、「データ分析力」よりも「ビジネススキル」意識するのが吉 ヒットよりは送りバントを確実に成功させて信用残高を貯める 現実解 PMのアウトプットイメージから 大きくずれなけらばOKくらいの感覚で! ・目的、アプトプットイメージをしつこく確認する ・進捗2割で共有する ・納期の遅延を事前に報告する ・できれば、PMの期待値を僅かに上回る
2件目以降、仕事の幅を広げるために PMの心理的ハードルを下げておくことが大切 理想 自ら考案した手法で 課題解決に大きく寄与! PMの期待値を少し 上回れれば御の字す
自宅待機中の心得(2020/4~2020/6) 自分の精神力でモチベーショを維持するのは止めましょうw そのための「仕組み」を活用するのが吉 DLGの効用 スキルへの効用 モチベーションへの効用 ・最新の情報にキャッチアップできる ・業界の動向を知れる ・実践的なトレーニングが積める ・企画に参加して、強制的にin/out
putする ・メンバーの活動を見て自分に刺激を与える ・悩みがあるのは自分だけでないと認識できる モチベーション、 in/out put量 時間 谷間に落ちると戻すのが大変そう DLGを活用して一定のモチベーションを保つ とにかく目の前のタスクをこなさないと いけない状況を作ってしまう
二案件目での学び(2020/7~現在) 〇〇×データサイエンスを満たせる人材は少ない 未経験からの参入だと、 “ドメイン知識”や“ポータブルスキル”を推したほうが案件獲得しやすい お客さんの求めるスキル 持ち合わせているスキル 〇〇業界(製造業)への深いドメイン知識 >サイエンス力、エンジニアリング力 (これらはむしろあって当たり前と思われてい る?)
・半導体製造プロセスに関する知識 ・製造業での課題解決経験 ・サイエンス力、エンジニアリング力 に関する基礎的な能力 後は、前述のようにコツコツと信用残高を貯めていって、 やりたい仕事ができるように動く
想像と現実 キャリアチェンジ前の想像 キャリチェンジ後の現実 ・機械学習とか深層学習とかバリバリ使える ・すぐに高収入 ・高度な数理的能力が求められる ・需要が高い ・それ以外の業務がほとんど ・長期戦になる ・ドメイン知識でカバーできる部分もある
・それはそう あきらめずに、 走り続けるメンタルが必要になります。。
まとめ YouTubeにインタビュー動画がアップされる予定なので、 良かったらご覧ください 未経験 & 社会人経験を積んだ上でのキャリチェンジに関して ✅まずはビジネス力を意識して信用残高を貯めよう! 信用を獲得できれば、仕事の幅が広がるはず ✅自分一人で頑張るのは止めよう! お互いに利用しあって、長期戦を乗り越えたい
✅〇〇×データ分析人材を目指すのが現実的 〇〇はこれまでの経験、ここも同時に変えるのは更に難易度高い