Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My_lightning_talk_at_data_learning_guild_s_1st_...
Search
banquet.kuma
July 23, 2020
Business
0
790
My_lightning_talk_at_data_learning_guild_s_1st_anniversary_event.pdf
データ分析界隈に転職してから1年間のことを
データラーニングギルドの1周年記念イベントで話しました。
banquet.kuma
July 23, 2020
Tweet
Share
More Decks by banquet.kuma
See All by banquet.kuma
彼女を励ますために、Azure OpenAI Serviceを使って、kmakici LINE bot を作った
dar_kuma_san
0
160
面倒なことは、 Azure OpenAI Service× Power Automateにやらせよう!
dar_kuma_san
0
210
データで振り返るデータラーニングギルド【基礎集計の部】
dar_kuma_san
0
2.5k
Deep Learning 1 (Chapter 6)
dar_kuma_san
0
700
Deep Learning 1 (Chapter 4 , Chapter 5)
dar_kuma_san
0
500
Deep Learning 1 (Chapter 2 , Chapter 3)
dar_kuma_san
0
700
I started learning Data Science.
dar_kuma_san
0
890
Python始めて半年で感じたこと/I’ve recently started to learn Python.
dar_kuma_san
0
290
Other Decks in Business
See All in Business
VISASQ: ABOUT US
eikohashiba
15
510k
AI時代における変革の入口-100年後も語られる25年のために- #scrumosaka / The entry point to transformation in the AI era For 25 years that will be talked about 100 years from now
kyonmm
PRO
6
1k
最高のステークホルダーになるために / Striving to be the best stakeholder
iwashi86
3
1.8k
イオングローバルSCM株式会社 会社概要
agscm
0
550
株式会社PROOF_エンジニア向け採用資料
proof
0
200
ラクスパートナーズ採用ピッチ資料_エンジニア部門.pdf
rakuspartners_recruit
0
25k
株式会社ボスコ・テクノロジーズ 採用ピッチ資料
boscotechrecruit
0
790
Nstock 採用資料 / We are hiring
nstock
29
310k
【新卒採用ピッチ資料/営業職】(株)キャリアデザインセンター
cdcsaiyo
0
1.8k
アウトカムファーストな専門技術組織の構築と運用のための取り組み / Efforts to Build and Operate an Outcome-First Technical Expertise Organization
lycorptech_jp
PRO
5
490
Things - Company Deck
things2109
0
1.4k
株式会社ジグザグ_新規投資家向け資料_2025年7月.pdf
zig_zag
0
1.9k
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Rails Girls Zürich Keynote
gr2m
95
14k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Designing for Performance
lara
610
69k
How STYLIGHT went responsive
nonsquared
100
5.6k
Bash Introduction
62gerente
613
210k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1k
Music & Morning Musume
bryan
46
6.7k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Transcript
この1年データ分析界隈で やったことと今後の戦略 データラーニングギルド 1周年記念LT
自己紹介 年齢:34 学歴:応用物理学修士 職歴:大手電機(生産技術) →半導体ベンチャー(生産技術) →データ分析系SES(?) twitter:@dar_kuma_san
昨年8月に、完全未経験からデータ分析業に転職しました。 転職までの話は割愛します。 こちらの記事を参照下さい。 https://qiita.com/banquet_kuma/items/7d44d0e777bcc5ac8b67
転職後に行動したことと、 現在の状況(with コロナ)を話します これからキャリアチェンジを考えている方の 参考になれば幸いです ※あくまで私のモデルケースなので、一般論ではないです。 話半分に聞いてください。
1年表 時期 イベント 学習したこと 意識したこと 感情 2019/8 キャリアチェンジ ・統計 ・Python
特になし とりあえず、走り出した のでやるしかない 2019/9 自習期間 2019/10 研修期間 統計検定2級取得 Python3エンジニア試験 ・数学、統計 ・R、Python、SQL ・機械学習、 多変量解析 ・CRISP-DM ・プレゼンスキル ・テストで良い点を取る ・積極的に手を挙げる ・予習復習 会社以外の学びで差別化 したい(DLGの活用) 2019/11 2019/12 2020/1 2020/2~3 実務 (前処理ツールの開発) ・自然言語処理 ・Python自動化 プログラミング データ分析力よりも ビジネススキルを意識 分析スキルよりも ビジネススキルを求めら れているな 2020/4~6 自宅待機期間 (=自習期間) 色々 モチベーションの維持に DLGを活用 この先仕事があるのか 不安 2020/7~ 実務 (製造業のデータ分析) ドメイン知識 (現状、ほとんどこ れに費やしている) ・ドメイン知識を推す ・ドメンチ知識にキャッ チアップする ・積極的に発言する ・業務内外を分けない 経験値が上がることは なんでもやりたい ここからが勝負
一案件目の心得(2020/2~2020/3) 初案件では、「データ分析力」よりも「ビジネススキル」意識するのが吉 ヒットよりは送りバントを確実に成功させて信用残高を貯める 現実解 PMのアウトプットイメージから 大きくずれなけらばOKくらいの感覚で! ・目的、アプトプットイメージをしつこく確認する ・進捗2割で共有する ・納期の遅延を事前に報告する ・できれば、PMの期待値を僅かに上回る
2件目以降、仕事の幅を広げるために PMの心理的ハードルを下げておくことが大切 理想 自ら考案した手法で 課題解決に大きく寄与! PMの期待値を少し 上回れれば御の字す
自宅待機中の心得(2020/4~2020/6) 自分の精神力でモチベーショを維持するのは止めましょうw そのための「仕組み」を活用するのが吉 DLGの効用 スキルへの効用 モチベーションへの効用 ・最新の情報にキャッチアップできる ・業界の動向を知れる ・実践的なトレーニングが積める ・企画に参加して、強制的にin/out
putする ・メンバーの活動を見て自分に刺激を与える ・悩みがあるのは自分だけでないと認識できる モチベーション、 in/out put量 時間 谷間に落ちると戻すのが大変そう DLGを活用して一定のモチベーションを保つ とにかく目の前のタスクをこなさないと いけない状況を作ってしまう
二案件目での学び(2020/7~現在) 〇〇×データサイエンスを満たせる人材は少ない 未経験からの参入だと、 “ドメイン知識”や“ポータブルスキル”を推したほうが案件獲得しやすい お客さんの求めるスキル 持ち合わせているスキル 〇〇業界(製造業)への深いドメイン知識 >サイエンス力、エンジニアリング力 (これらはむしろあって当たり前と思われてい る?)
・半導体製造プロセスに関する知識 ・製造業での課題解決経験 ・サイエンス力、エンジニアリング力 に関する基礎的な能力 後は、前述のようにコツコツと信用残高を貯めていって、 やりたい仕事ができるように動く
想像と現実 キャリアチェンジ前の想像 キャリチェンジ後の現実 ・機械学習とか深層学習とかバリバリ使える ・すぐに高収入 ・高度な数理的能力が求められる ・需要が高い ・それ以外の業務がほとんど ・長期戦になる ・ドメイン知識でカバーできる部分もある
・それはそう あきらめずに、 走り続けるメンタルが必要になります。。
まとめ YouTubeにインタビュー動画がアップされる予定なので、 良かったらご覧ください 未経験 & 社会人経験を積んだ上でのキャリチェンジに関して ✅まずはビジネス力を意識して信用残高を貯めよう! 信用を獲得できれば、仕事の幅が広がるはず ✅自分一人で頑張るのは止めよう! お互いに利用しあって、長期戦を乗り越えたい
✅〇〇×データ分析人材を目指すのが現実的 〇〇はこれまでの経験、ここも同時に変えるのは更に難易度高い