Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DatabricksによるRAGアーキテクチャー
Search
Databricks Japan
May 12, 2024
Technology
0
490
DatabricksによるRAGアーキテクチャー
DatabricksによるRAGアーキテクチャーについて説明します。
Databricks Japan
May 12, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
150
RedshiftからDatabricksに引っ越してみたら、 想像以上に良かった話
databricksjapan
0
150
Azure SynapseからAzure Databricksへ 移行してわかった新時代のコスト問題!?
databricksjapan
0
150
Databricks連携で実現する DWHモダナイゼーション
databricksjapan
0
150
[2025年7月版] AI/BI 最新機能アップデート / AIBI update on July
databricksjapan
0
170
AIもデータも、もっと身近に。Databricksで広がる金融業界の可能性 / FDUA-Study
databricksjapan
0
250
OTFSG勉強会 / Introduction to the History of Delta Lake + Iceberg
databricksjapan
0
260
[2025年5月版] Azure Databricks最新機能アップデート / 202505 Azure Databricks Latest Updates
databricksjapan
0
290
DatabricksとPower BIの連携メリット / Databricks PowerBI Integration Merits
databricksjapan
1
380
Other Decks in Technology
See All in Technology
pprof vs runtime/trace (FlightRecorder)
task4233
0
170
PLaMoの事後学習を支える技術 / PFN LLMセミナー
pfn
PRO
9
3.9k
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
4
630
extension 現場で使えるXcodeショートカット一覧
ktombow
0
220
多様な事業ドメインのクリエイターへ 価値を届けるための営みについて
massyuu
1
400
ZOZOのAI活用実践〜社内基盤からサービス応用まで〜
zozotech
PRO
0
200
実装で解き明かす並行処理の歴史
zozotech
PRO
1
540
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
140
Exadata Database Service on Dedicated Infrastructure(ExaDB-D) UI スクリーン・キャプチャ集
oracle4engineer
PRO
2
5.5k
Where will it converge?
ibknadedeji
0
190
生成AI_その前_に_マルチクラウド時代の信頼できるデータを支えるSnowflakeメタデータ活用術.pdf
cm_mikami
0
120
自作LLM Native GORM Pluginで実現する AI Agentバックテスト基盤構築
po3rin
2
270
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
9
580
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.7k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
A designer walks into a library…
pauljervisheath
209
24k
Building Adaptive Systems
keathley
43
2.8k
Raft: Consensus for Rubyists
vanstee
139
7.1k
Transcript
Mosaic AIのデータ中心アプローチ 事前学習モデルの 活用、カスタム モデルの構築 リアルタイムアプリに モデルを提供して監 視 ネイティブツールによ るデータと特徴量の
準備 データプラットフォーム — Delta Lake ガバナンス — Unity Catalog データセット モデル アプリ
©2024 Databricks Inc. — All rights reserved 2 RAGはMosaic AIの一部です
Mosaic AIはすべてのタイプのAIで動作します - 古典的なML、ディープラーニング、RAGを含む生成AI MLOps + LLMOps データとベクトルの準備 ネイティブツールでデータと特徴量を準備 アプリケーションの提供 リアルタイムアプリにモデルを提供して監視 モデルの構築と評価 カスタムモデルのトレーニング、ファインチューニング、事前学習 モデルに対するプロンプトエンジニアリング 構造化データとベクトルデータベースのサービング リアルタイムAPIとしてデータを提供 データとAIのガバナンス – Unity Catalog データプラットフォーム – Delta Lake
©2023 Databricks Inc. — All rights reserved 3 Fine Tuning
Model Serving Pre-training Model Serving Vector Search Model Serving MLflow AI Gateway MLflow Evaluation MLflow Prompt Engg 生成AIアプリケーションにリアルタイムデータを接 続するためにRAGが必要です プロンプト エンジニアリング Retrieval Augmented Generation (RAG) ファイン チューニング 事前トレーニング LLMの挙動をガイドする ための特殊なプロンプトを作 成 LLMと企業データを結合 事前学習LLMを特定の データセット、ドメイン に適合 最初からLLMを トレーニング
©2024 Databricks Inc. — All rights reserved 4 RAGはMosaic AIの一部です
Mosaic AIの機能 (AI) レイクハウスの機能 (Data + AI) Mosaic AIはすべてのタイプのAIで動作します - 古典的なML、ディープラーニング、RAGを含む生成AI MLOps + LLMOps MLflow アセットバンドル (DAB) CI/CDサポート データとベクトルの準備 ネイティブツールでデータと特徴量を準備 SQL ワークフロー Delta Live Tables ノートブック アプリケーションの提供 リアルタイムアプリにモデルを提供して監視 モデル サービング AI Functions SQLからモデル呼出 Lakehouse Apps レイクハウス モニタリング モデルの構築と評価 カスタムモデルのトレーニング、ファインチューニング 事前学習モデルのプロンプトエンジニアリング MLランタイムと ノートブック AutoML Fine Tuning マーケット プレースのモデル MPT LLaMA2 AI Playground MLflow Track & Evaluate データとベクトルの提供 Feature Serving Vector Search Function Serving ガバナンス モデルレジストリ in Unity Catalog Unity Catalog Feature Store in Unity Catalog データプラットフォーム Deltaテーブル 構造化データ ファイル (ボリューム) 非構造化データ
©2024 Databricks Inc. — All rights reserved RAGアプリケーションはリアルタイム、バッチ、 ストリーミングです リアルタイム
例: ポリシーに関する質問に回答する チャットbot バッチ / ストリーミング 例: リスクに関するアンケートが新たに 1万件アップロードされた際に処理 保存データ パイプ ライン Webアプリ Slack / Teams SaaSアプリ SMS RAG アプリ
©2024 Databricks Inc. — All rights reserved 記録 REST API
Databricks内あるいはREST APIによる セキュアな接続 自動 同期 構造化 & 非構造化データ チャットアプリケーション UI/UX、ユーザー認証、セッション管理など モニタリング Databricks によるRAGの デプロイ レイクハウス: ストレージ & ガバナンス モデル データ & ベクトルサービング データ & ベクトル 準備パイプライン RAGチェーン アプリからの質問に反応するために、認証情報の管理、ガバナンス、ロギングを 含むモデルとデータのオーケストレーション
©2024 Databricks Inc. — All rights reserved 記録 REST API
Databricks内あるいはREST APIによる セキュアな接続 自動で 同期 Databricks によるRAGの デプロイ チャットアプリケーション UI/UX、ユーザー認証、セッション管理など 既存アプリ Salesforce、Webポータルなど Lakehouse Apps Databricksがホスト モニタリング レイクハウスモ ニタリング レイクハウス: ストレージ & ガバナンス モデル GenAI Model serving データ & ベクトルサービング Feature Serving Vector Search データ&ベクトルの準備 ワーク フロー Delta Live Tables ワークフロー バッチ/ストリームパイプライン RAGチェーン アプリからの質問に反応するために、認証情報の管理、ガバナンス、ロギングを 含むモデルとデータのオーケストレーション モデルサービング LangChain, Python, … Unity Catalog Deltaテーブル ボリューム Mosaic AIの機能 (AI) Lakehouseの機能 (Data + AI)
©2024 Databricks Inc. — All rights reserved データの準備
©2024 Databricks Inc. — All rights reserved 9 非構造化データの準備 Databricks管理のエンべディングとVector
Search モデルサービング ベクトルDB Vector Search 格納 Delta テーブル 自動で同期 外部モデル カスタムモデル 基盤モデル チャンク & 特徴量 Databricksが エンべディング を計算 モデル 任意のオープン、プロプライエタリのモデル MPT LLaMA2 外部 ソース 取り込み テーブル ボリューム ファイル & メタデータ 文書の処理 1. 解析 2. クレンジング 3. チャンク作成 4. 特徴量生成 ワークフロー Delta Live Tables ノートブック
©2024 Databricks Inc. — All rights reserved 10 非構造化データの準備 顧客管理のエンべディングとVector
Search モデルサービング 外部モデル カスタムモデル 基盤モデル 外部 ソース 取り込み Tables Volumes ファイル & メタデータ 文書の処理 1. 解析 2. クレンジング 3. チャンク作成 4. 特徴量生成 チャンク & 特徴量 ワークフロー Delta Live Tables ノートブック モデル 任意のオープン、プロプライエタリのモデル MPT LLaMA2 ベクトルDB Vector Search 格納 Delta テーブル 自動 同期 エンべ ディング ご自身で エンべディング を計算して格納 ワークフロー Delta Live Tables ノートブック チャンク ベクトル 特徴量
©2024 Databricks Inc. — All rights reserved 11 構造化データの準備 サービング
Feature Serving 格納 外部 ソース 取り込み Deltaテーブル Deltaテーブル 自動同期 行 特徴量 エンジニア リング 特徴量 ワークフロー Delta Live Tables ノートブック オンライン テーブル Feature Servingとオンラインテーブル
©2024 Databricks Inc. — All rights reserved チェーンの構築と提供
©2024 Databricks Inc. — All rights reserved 13 モデルサービング データサービング
チェーンのロジック RAGアーキテクチャ: チェーン モデルサービング 質問 クエリー 処理 クエリー 展開 リトリーバ プロンプト エンジニア リング 生成 応答 外部モデル カスタムモデル 基盤モデル Feature Serving Vector Search 後処理 Unity Catalog Deltaテーブル 記録 モニタリング レイクハウスモ ニタリング 🦜🔗
©2024 Databricks Inc. — All rights reserved アプリケーション モニタリング Databricks
によるRAGの デプロイ レイクハウス: ストレージ & ガバナンス モデル データ & ベクトル サービング データ&ベクトル 準備パイプライン RAGチェーン