Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DatabricksによるRAGアーキテクチャー
Search
Databricks Japan
May 12, 2024
Technology
0
460
DatabricksによるRAGアーキテクチャー
DatabricksによるRAGアーキテクチャーについて説明します。
Databricks Japan
May 12, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
Databricks連携で実現する DWHモダナイゼーション
databricksjapan
0
55
[2025年7月版] AI/BI 最新機能アップデート / AIBI update on July
databricksjapan
0
96
AIもデータも、もっと身近に。Databricksで広がる金融業界の可能性 / FDUA-Study
databricksjapan
0
170
OTFSG勉強会 / Introduction to the History of Delta Lake + Iceberg
databricksjapan
0
230
[2025年5月版] Azure Databricks最新機能アップデート / 202505 Azure Databricks Latest Updates
databricksjapan
0
260
DatabricksとPower BIの連携メリット / Databricks PowerBI Integration Merits
databricksjapan
1
290
[2025年4月版] Databricks Academy ラボ環境 利用開始手順 / Databricks Academy Labs Onboarding
databricksjapan
2
530
Lakeflow Connectのご紹介
databricksjapan
1
300
MLflowの現在と未来 / MLflow Present and Future
databricksjapan
1
820
Other Decks in Technology
See All in Technology
「守る」から「進化させる」セキュリティへ ~AWS re:Inforce 2025参加報告~ / AWS re:Inforce 2025 Participation Report
yuj1osm
1
110
実践アプリケーション設計 ①データモデルとドメインモデル
recruitengineers
PRO
2
200
Postman MCP 関連機能アップデート / Postman MCP feature updates
yokawasa
0
140
モダンな現場と従来型の組織——そこに生じる "不整合" を解消してこそチームがパフォーマンスを発揮できる / Team-oriented Organization Design 20250825
mtx2s
5
520
Goss: New Production-Ready Go Binding for Faiss #coefl_go_jp
bengo4com
0
1.1k
GitHub Copilot coding agent を推したい / AIDD Nagoya #1
tnir
2
4.5k
Go で言うところのアレは TypeScript で言うとコレ / Kyoto.なんか #7
susisu
5
1.4k
Gaze-LLE: Gaze Target Estimation via Large-Scale Learned Encoders
kzykmyzw
0
310
どこで動かすか、誰が動かすか 〜 kintoneのインフラ基盤刷新と運用体制のシフト 〜
ueokande
0
180
人を動かすことについて考える
ichimichi
2
320
AIとTDDによるNext.js「隙間ツール」開発の実践
makotot
5
660
生成AI利用プログラミング:誰でもプログラムが書けると 世の中どうなる?/opencampus202508
okana2ki
0
190
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
A designer walks into a library…
pauljervisheath
207
24k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Become a Pro
speakerdeck
PRO
29
5.5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Pragmatic Product Professional
lauravandoore
36
6.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
820
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Transcript
Mosaic AIのデータ中心アプローチ 事前学習モデルの 活用、カスタム モデルの構築 リアルタイムアプリに モデルを提供して監 視 ネイティブツールによ るデータと特徴量の
準備 データプラットフォーム — Delta Lake ガバナンス — Unity Catalog データセット モデル アプリ
©2024 Databricks Inc. — All rights reserved 2 RAGはMosaic AIの一部です
Mosaic AIはすべてのタイプのAIで動作します - 古典的なML、ディープラーニング、RAGを含む生成AI MLOps + LLMOps データとベクトルの準備 ネイティブツールでデータと特徴量を準備 アプリケーションの提供 リアルタイムアプリにモデルを提供して監視 モデルの構築と評価 カスタムモデルのトレーニング、ファインチューニング、事前学習 モデルに対するプロンプトエンジニアリング 構造化データとベクトルデータベースのサービング リアルタイムAPIとしてデータを提供 データとAIのガバナンス – Unity Catalog データプラットフォーム – Delta Lake
©2023 Databricks Inc. — All rights reserved 3 Fine Tuning
Model Serving Pre-training Model Serving Vector Search Model Serving MLflow AI Gateway MLflow Evaluation MLflow Prompt Engg 生成AIアプリケーションにリアルタイムデータを接 続するためにRAGが必要です プロンプト エンジニアリング Retrieval Augmented Generation (RAG) ファイン チューニング 事前トレーニング LLMの挙動をガイドする ための特殊なプロンプトを作 成 LLMと企業データを結合 事前学習LLMを特定の データセット、ドメイン に適合 最初からLLMを トレーニング
©2024 Databricks Inc. — All rights reserved 4 RAGはMosaic AIの一部です
Mosaic AIの機能 (AI) レイクハウスの機能 (Data + AI) Mosaic AIはすべてのタイプのAIで動作します - 古典的なML、ディープラーニング、RAGを含む生成AI MLOps + LLMOps MLflow アセットバンドル (DAB) CI/CDサポート データとベクトルの準備 ネイティブツールでデータと特徴量を準備 SQL ワークフロー Delta Live Tables ノートブック アプリケーションの提供 リアルタイムアプリにモデルを提供して監視 モデル サービング AI Functions SQLからモデル呼出 Lakehouse Apps レイクハウス モニタリング モデルの構築と評価 カスタムモデルのトレーニング、ファインチューニング 事前学習モデルのプロンプトエンジニアリング MLランタイムと ノートブック AutoML Fine Tuning マーケット プレースのモデル MPT LLaMA2 AI Playground MLflow Track & Evaluate データとベクトルの提供 Feature Serving Vector Search Function Serving ガバナンス モデルレジストリ in Unity Catalog Unity Catalog Feature Store in Unity Catalog データプラットフォーム Deltaテーブル 構造化データ ファイル (ボリューム) 非構造化データ
©2024 Databricks Inc. — All rights reserved RAGアプリケーションはリアルタイム、バッチ、 ストリーミングです リアルタイム
例: ポリシーに関する質問に回答する チャットbot バッチ / ストリーミング 例: リスクに関するアンケートが新たに 1万件アップロードされた際に処理 保存データ パイプ ライン Webアプリ Slack / Teams SaaSアプリ SMS RAG アプリ
©2024 Databricks Inc. — All rights reserved 記録 REST API
Databricks内あるいはREST APIによる セキュアな接続 自動 同期 構造化 & 非構造化データ チャットアプリケーション UI/UX、ユーザー認証、セッション管理など モニタリング Databricks によるRAGの デプロイ レイクハウス: ストレージ & ガバナンス モデル データ & ベクトルサービング データ & ベクトル 準備パイプライン RAGチェーン アプリからの質問に反応するために、認証情報の管理、ガバナンス、ロギングを 含むモデルとデータのオーケストレーション
©2024 Databricks Inc. — All rights reserved 記録 REST API
Databricks内あるいはREST APIによる セキュアな接続 自動で 同期 Databricks によるRAGの デプロイ チャットアプリケーション UI/UX、ユーザー認証、セッション管理など 既存アプリ Salesforce、Webポータルなど Lakehouse Apps Databricksがホスト モニタリング レイクハウスモ ニタリング レイクハウス: ストレージ & ガバナンス モデル GenAI Model serving データ & ベクトルサービング Feature Serving Vector Search データ&ベクトルの準備 ワーク フロー Delta Live Tables ワークフロー バッチ/ストリームパイプライン RAGチェーン アプリからの質問に反応するために、認証情報の管理、ガバナンス、ロギングを 含むモデルとデータのオーケストレーション モデルサービング LangChain, Python, … Unity Catalog Deltaテーブル ボリューム Mosaic AIの機能 (AI) Lakehouseの機能 (Data + AI)
©2024 Databricks Inc. — All rights reserved データの準備
©2024 Databricks Inc. — All rights reserved 9 非構造化データの準備 Databricks管理のエンべディングとVector
Search モデルサービング ベクトルDB Vector Search 格納 Delta テーブル 自動で同期 外部モデル カスタムモデル 基盤モデル チャンク & 特徴量 Databricksが エンべディング を計算 モデル 任意のオープン、プロプライエタリのモデル MPT LLaMA2 外部 ソース 取り込み テーブル ボリューム ファイル & メタデータ 文書の処理 1. 解析 2. クレンジング 3. チャンク作成 4. 特徴量生成 ワークフロー Delta Live Tables ノートブック
©2024 Databricks Inc. — All rights reserved 10 非構造化データの準備 顧客管理のエンべディングとVector
Search モデルサービング 外部モデル カスタムモデル 基盤モデル 外部 ソース 取り込み Tables Volumes ファイル & メタデータ 文書の処理 1. 解析 2. クレンジング 3. チャンク作成 4. 特徴量生成 チャンク & 特徴量 ワークフロー Delta Live Tables ノートブック モデル 任意のオープン、プロプライエタリのモデル MPT LLaMA2 ベクトルDB Vector Search 格納 Delta テーブル 自動 同期 エンべ ディング ご自身で エンべディング を計算して格納 ワークフロー Delta Live Tables ノートブック チャンク ベクトル 特徴量
©2024 Databricks Inc. — All rights reserved 11 構造化データの準備 サービング
Feature Serving 格納 外部 ソース 取り込み Deltaテーブル Deltaテーブル 自動同期 行 特徴量 エンジニア リング 特徴量 ワークフロー Delta Live Tables ノートブック オンライン テーブル Feature Servingとオンラインテーブル
©2024 Databricks Inc. — All rights reserved チェーンの構築と提供
©2024 Databricks Inc. — All rights reserved 13 モデルサービング データサービング
チェーンのロジック RAGアーキテクチャ: チェーン モデルサービング 質問 クエリー 処理 クエリー 展開 リトリーバ プロンプト エンジニア リング 生成 応答 外部モデル カスタムモデル 基盤モデル Feature Serving Vector Search 後処理 Unity Catalog Deltaテーブル 記録 モニタリング レイクハウスモ ニタリング 🦜🔗
©2024 Databricks Inc. — All rights reserved アプリケーション モニタリング Databricks
によるRAGの デプロイ レイクハウス: ストレージ & ガバナンス モデル データ & ベクトル サービング データ&ベクトル 準備パイプライン RAGチェーン