Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Databricksの課金体系
Search
Databricks Japan
May 12, 2024
Technology
0
590
Databricksの課金体系
Databricksの課金体系(DBU)について説明します。
Databricks Japan
May 12, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
JEDAI Meetup! Databricks AI/BI概要
databricksjapan
0
92
Databricks AI/BIクイックワークショップ 環境セットアップガイド
databricksjapan
1
59
Databricks AI/BIクイックワークショップ
databricksjapan
1
240
[2024年10月版] Notebook 2.0のご紹介 / Notebook2.0
databricksjapan
1
1.8k
Databricksによるデータサイエンスと機械学習 / Data Science With Databricks
databricksjapan
2
92
Databricksで挑む!SEGAのデータ活用の次なる一歩
databricksjapan
2
410
Azure Databricksアカウント & Unity Catalogメタストア概要 / Azure Databricks Account and Unity Catalog Metastore Overview
databricksjapan
0
99
[2024年12月版] Unity Catalogセットアップガイド / Unity Catalog Setup Guide
databricksjapan
0
400
[2024年12月版] Databricks Express Setup手順 / Databricks Express Setup
databricksjapan
1
130
Other Decks in Technology
See All in Technology
技術負債の「予兆検知」と「状況異変」のススメ / Technology Dept
i35_267
1
1.1k
自動テストの世界に、この5年間で起きたこと
autifyhq
10
8.5k
一度 Expo の採用を断念したけど、 再度 Expo の導入を検討している話
ichiki1023
1
170
OpenID BizDay#17 KYC WG活動報告(法人) / 20250219-BizDay17-KYC-legalidentity
oidfj
0
240
なぜ私は自分が使わないサービスを作るのか? / Why would I create a service that I would not use?
aiandrox
0
730
君も受託系GISエンジニアにならないか
sudataka
2
430
2.5Dモデルのすべて
yu4u
2
860
2024.02.19 W&B AIエージェントLT会 / AIエージェントが業務を代行するための計画と実行 / Algomatic 宮脇
smiyawaki0820
13
3.3k
ユーザーストーリーマッピングから始めるアジャイルチームと並走するQA / Starting QA with User Story Mapping
katawara
0
200
TAMとre:Capセキュリティ編 〜拡張脅威検出デモを添えて〜
fujiihda
2
240
7日間でハッキングをはじめる本をはじめてみませんか?_ITエンジニア本大賞2025
nomizone
2
1.8k
Moved to https://speakerdeck.com/toshihue/presales-engineer-career-bridging-tech-biz-ja
toshihue
2
740
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
The World Runs on Bad Software
bkeepers
PRO
67
11k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.3k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
How GitHub (no longer) Works
holman
314
140k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
Transcript
©2024 Databricks Inc. — All rights reserved Databricks DBU 1
©2024 Databricks Inc. — All rights reserved Databricks - プラットフォーム製品とコンピュート
Databricks製品 クラウド コンピュート • Databricksプラットフォー ム製品を起動する際、お客 様のクラウド アカウント内に コンピュートのインフラを配 備します。 • クラウドコンピュートのコス トはDatabricksのコストと は別であり Databricksの 価格*の 要素ではありません pricing* (サーバレス製品 は除く) * サーバレスのDBUにおいては、クラウドコンピュートはDatabricksのアカウントに存在し、このコストをお客様に請求します。 Databricks サーバレス 製品 Databricksアカウント クラウドコンピュート 非サーバレス サーバレス
©2024 Databricks Inc. — All rights reserved DBUとは? ▪ Databrick
Unit (DBU)は処理能力に対して正規化された単位です ▪ Databricks製品のほとんどがDBUで課金されます ▪ Databricksの消費量/使用量を計測するためにDBUを使用しています ▪ 消費されるDBUの数は、使用された計算リソースによって決定されます ▪ $DBU/hourは特定の製品の時間あたりの価格です 注意事項: よりパワフルなクラウドコンピュートほど、 時間あたりのDBUが増加します
©2024 Databricks Inc. — All rights reserved Databricks Unit (DBU)は時間あたりの処理能力の単位であり、秒単位で課金されます
▪ Databricksクラスターの起動で課金 ▪ アイドル状態のプールインスタンスではDBU課金されません (AzureのVMコストは発生します) ドライバー DS3_v2 ワーカー DS3_v2 ワーカー DS3_v2 ワーカー DS3_v2 2時間 4ノード (1ドライバー + 3ワーカー) x 2時間 = 8 DBU 合計コスト = 8 DBUのコスト + DS3_v2の8 インスタンス時間のAzureコスト Azure Databricksのコスト - DBU
©2024 Databricks Inc. — All rights reserved 課金モデル • 使用量に応じてスケールする課金モデルに基づく柔軟な消費が可能に。
• Databricks Unit (DBU)を消費するクラスターやSQLウェアハウスを用いる際に コストが発生します。 • DBUあたりの金額はワークスペースの課金プラン(スタンダートやプレミアム)とコン ピュートの選択肢(インタラクティブ、ジョブ、SQLウェアハウスなど)に 依存します。 • 他のAzureサービスと一緒に請求されます。 • コンピュートのインスタンスが実行されていない際にはDBUは課金されません。
©2024 Databricks Inc. — All rights reserved DLT Compute -
Photon Delta Lakeで高信頼、運用可 能、テスト可能なデータ処理 パイプラインを構築 するために宣言型ツールを 活用 ディープダイブ: プラットフォーム製品ファミリー Jobs Compute 大規模にデータレイクを 構築し、データを管理するため のデータエンジニア リングパイプラインを実行 Jobs Compute - Photon 最適なワークロード パフォーマンスのために DatabricksのPhotonエンジン を用いたデータエンジニアリン グパイプラインの実行 All-purpose Compute ワンストップショップ体験でイ ンタラクティブな データサイエンス、機械 学習ワークロードを実行 DLT Compute Delta Lakeに高品質な データを提供する高信頼の データエンジニアリング パイプラインの構築と管理 SQL Compute データレイクから タイムリーに洞察を得るため に、BIレポート、分析、 可視化のためにSQLクエリーを 実行 All-purpose Compute - Photon 最適なワークロード パフォーマンスのために DatabricksのPhoton エンジンを用いたデータサイ エンスや機械学習ワーク ロードの実行 Serverless SQL Compute 最適なレーテンシーと 使用率のためにDatabricksの サーバレス環境でSQL クエリーを実行
©2022 Databricks Inc. — All rights reserved TCOブレークダウンの例 $1.00 $DBU
$3.00 VM $1.45 $DBU $1.50 VM TCO $4.00 TCO $2.95 Spark Databricks 最適化 • Databricksの最適化Sparkはクエリーを迅速に 完了するため、計算資源の消費が抑えられます • ジョブあたりのTCOを低減します • 2倍高速であることは、インフラストラクチャのコスト が半分になることを意味します • この例では、クラウドインフラストラクチャの節約に よって、TCOを26%削減できる可能性があります 26%のTCO削減
©2024 Databricks Inc. — All rights reserved ワークロードに基づくサイジング 最小 ピーク
ピークに基づく オンプレミスアプローチ 平均 実際のワークロード クラウドの推定値 コスト削減の機会 クラウドスケールの最小 クラウドスケールの最大