Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Databricksの課金体系
Search
Databricks Japan
May 12, 2024
Technology
0
1k
Databricksの課金体系
Databricksの課金体系(DBU)について説明します。
Databricks Japan
May 12, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
Databricks連携で実現する DWHモダナイゼーション
databricksjapan
0
55
[2025年7月版] AI/BI 最新機能アップデート / AIBI update on July
databricksjapan
0
100
AIもデータも、もっと身近に。Databricksで広がる金融業界の可能性 / FDUA-Study
databricksjapan
0
170
OTFSG勉強会 / Introduction to the History of Delta Lake + Iceberg
databricksjapan
0
230
[2025年5月版] Azure Databricks最新機能アップデート / 202505 Azure Databricks Latest Updates
databricksjapan
0
260
DatabricksとPower BIの連携メリット / Databricks PowerBI Integration Merits
databricksjapan
1
290
[2025年4月版] Databricks Academy ラボ環境 利用開始手順 / Databricks Academy Labs Onboarding
databricksjapan
2
530
Lakeflow Connectのご紹介
databricksjapan
1
300
MLflowの現在と未来 / MLflow Present and Future
databricksjapan
1
820
Other Decks in Technology
See All in Technology
ECS モニタリング手法大整理
yendoooo
1
120
VPC Latticeのサービスエンドポイント機能を使用した複数VPCアクセス
duelist2020jp
0
240
会社にデータエンジニアがいることでできるようになること
10xinc
9
1.6k
制約理論(ToC)入門
recruitengineers
PRO
3
310
Backboneとしてのtimm2025
yu4u
4
1.5k
コスト削減の基本の「キ」~ コスト消費3大リソースへの対策 ~
smt7174
2
140
DeNA での思い出 / Memories at DeNA
orgachem
PRO
3
1.6k
生成AI利用プログラミング:誰でもプログラムが書けると 世の中どうなる?/opencampus202508
okana2ki
0
190
AIエージェント就活入門 - MCPが履歴書になる未来
eltociear
0
520
7月のガバクラ利用料が高かったので調べてみた
techniczna
3
440
Gaze-LLE: Gaze Target Estimation via Large-Scale Learned Encoders
kzykmyzw
0
320
サービスロボット最前線:ugoが挑むPhysical AI活用
kmatsuiugo
0
190
Featured
See All Featured
Facilitating Awesome Meetings
lara
55
6.5k
The Language of Interfaces
destraynor
160
25k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
We Have a Design System, Now What?
morganepeng
53
7.7k
Done Done
chrislema
185
16k
How GitHub (no longer) Works
holman
315
140k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Designing for Performance
lara
610
69k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Transcript
©2024 Databricks Inc. — All rights reserved Databricks DBU 1
©2024 Databricks Inc. — All rights reserved Databricks - プラットフォーム製品とコンピュート
Databricks製品 クラウド コンピュート • Databricksプラットフォー ム製品を起動する際、お客 様のクラウド アカウント内に コンピュートのインフラを配 備します。 • クラウドコンピュートのコス トはDatabricksのコストと は別であり Databricksの 価格*の 要素ではありません pricing* (サーバレス製品 は除く) * サーバレスのDBUにおいては、クラウドコンピュートはDatabricksのアカウントに存在し、このコストをお客様に請求します。 Databricks サーバレス 製品 Databricksアカウント クラウドコンピュート 非サーバレス サーバレス
©2024 Databricks Inc. — All rights reserved DBUとは? ▪ Databrick
Unit (DBU)は処理能力に対して正規化された単位です ▪ Databricks製品のほとんどがDBUで課金されます ▪ Databricksの消費量/使用量を計測するためにDBUを使用しています ▪ 消費されるDBUの数は、使用された計算リソースによって決定されます ▪ $DBU/hourは特定の製品の時間あたりの価格です 注意事項: よりパワフルなクラウドコンピュートほど、 時間あたりのDBUが増加します
©2024 Databricks Inc. — All rights reserved Databricks Unit (DBU)は時間あたりの処理能力の単位であり、秒単位で課金されます
▪ Databricksクラスターの起動で課金 ▪ アイドル状態のプールインスタンスではDBU課金されません (AzureのVMコストは発生します) ドライバー DS3_v2 ワーカー DS3_v2 ワーカー DS3_v2 ワーカー DS3_v2 2時間 4ノード (1ドライバー + 3ワーカー) x 2時間 = 8 DBU 合計コスト = 8 DBUのコスト + DS3_v2の8 インスタンス時間のAzureコスト Azure Databricksのコスト - DBU
©2024 Databricks Inc. — All rights reserved 課金モデル • 使用量に応じてスケールする課金モデルに基づく柔軟な消費が可能に。
• Databricks Unit (DBU)を消費するクラスターやSQLウェアハウスを用いる際に コストが発生します。 • DBUあたりの金額はワークスペースの課金プラン(スタンダートやプレミアム)とコン ピュートの選択肢(インタラクティブ、ジョブ、SQLウェアハウスなど)に 依存します。 • 他のAzureサービスと一緒に請求されます。 • コンピュートのインスタンスが実行されていない際にはDBUは課金されません。
©2024 Databricks Inc. — All rights reserved DLT Compute -
Photon Delta Lakeで高信頼、運用可 能、テスト可能なデータ処理 パイプラインを構築 するために宣言型ツールを 活用 ディープダイブ: プラットフォーム製品ファミリー Jobs Compute 大規模にデータレイクを 構築し、データを管理するため のデータエンジニア リングパイプラインを実行 Jobs Compute - Photon 最適なワークロード パフォーマンスのために DatabricksのPhotonエンジン を用いたデータエンジニアリン グパイプラインの実行 All-purpose Compute ワンストップショップ体験でイ ンタラクティブな データサイエンス、機械 学習ワークロードを実行 DLT Compute Delta Lakeに高品質な データを提供する高信頼の データエンジニアリング パイプラインの構築と管理 SQL Compute データレイクから タイムリーに洞察を得るため に、BIレポート、分析、 可視化のためにSQLクエリーを 実行 All-purpose Compute - Photon 最適なワークロード パフォーマンスのために DatabricksのPhoton エンジンを用いたデータサイ エンスや機械学習ワーク ロードの実行 Serverless SQL Compute 最適なレーテンシーと 使用率のためにDatabricksの サーバレス環境でSQL クエリーを実行
©2022 Databricks Inc. — All rights reserved TCOブレークダウンの例 $1.00 $DBU
$3.00 VM $1.45 $DBU $1.50 VM TCO $4.00 TCO $2.95 Spark Databricks 最適化 • Databricksの最適化Sparkはクエリーを迅速に 完了するため、計算資源の消費が抑えられます • ジョブあたりのTCOを低減します • 2倍高速であることは、インフラストラクチャのコスト が半分になることを意味します • この例では、クラウドインフラストラクチャの節約に よって、TCOを26%削減できる可能性があります 26%のTCO削減
©2024 Databricks Inc. — All rights reserved ワークロードに基づくサイジング 最小 ピーク
ピークに基づく オンプレミスアプローチ 平均 実際のワークロード クラウドの推定値 コスト削減の機会 クラウドスケールの最小 クラウドスケールの最大