list of special symmetry positions within a group (Wyckoff’s positions) is fully exploited for the description of crystal structures. In the case of P42/m group: Wyckoff Local symm. Equivalent positions 8k 1 (x, y, z), (¯ y, x, z + 1/2), (¯ x, ¯ y, z), (y, ¯ x, z + 1/2), (x, y, ¯ z), (¯ y, x, 1/2 − z), (¯ x, ¯ y, ¯ z), (y, ¯ x, 1/2 − z). 4j m.. (x, y, 0), (¯ x, ¯ y, 0), (¯ y, x, 1/2), (y, ¯ x, 1/2). 4i 2.. (0, 1/2, z), (1/2, 0, z + 1/2), (0, 1/2, ¯ z), (1/2, 0, 1/2 − z). 4h 2.. (1/2, 1/2, z), (1/2, 1/2, z + 1/2), (1/2, 1/2, ¯ z), (1/2, 1/2, 1/2 − z). 4g 2.. (0, 0, z), (0, 0, z + 1/2), (0, 0, ¯ z), (0, 0, 1/2 − z). 2f ¯ 4.. (1/2, 1/2, 1/4), (1/2, 1/2, 3/4). 2e ¯ 4.. (0, 0, 1/4), (0, 0, 3/4). 2d 2|m.. (0, 1/2, 1/2), (1/2, 0, 0). 2c 2|m.. (0, 1/2, 0), (1/2, 0, 1/2). 2b 2|m.. (1/2, 1/2, 0), (1/2, 1/2, 1/2). 2a 2|m.. (0, 0, 0), (0, 0, 1/2). Notice: when the coordinates of a transformed point are outside of the main cell we can put them back within 0 ≤ x, y, z < 1 by adding up integers. Example: x = 0.2 and y = 0.3 produce the next 4j positions: (0.2, 0.3, 0), (−0.2, −0.3, 0) = (0.8, 0.7, 0), (−0.3, 0.2, 0.5) = (0.7, 0.2, 0.5), and (0.3, −0.2, 0.5) = (0.3, 0.8, 0.5). c V. Lua˜ na, QTC Murcia 2008 (30)