Q2 ≡ ρ(1, 2)ρ(2, 1), etc. ρ(1, 2)ρ(2, 1) = ρ(1)ρ(2) − ρ2 (1, 2) ρ(1, 2)ρ(2, 3)ρ(3, 1) = ρ(1)ρ(2)ρ(3) − 1 2 ˆ Sρ(1)ρ2 (2, 3) + 1 3 ρ3 (1, 2, 3) We have come to cumulants: ρn c (1, . . . , N) ρ2 c (1, 2) = ρxc 2 = ρ(1)ρ(2) − ρ2 (1, 2) General! ρ3 c (1, 2, 3) = ρ(1)ρ(2)ρ(3) − 1 2 ˆ Sρ(1)ρ2 (2, 3) + 1 2 ρ3 (1, 2, 3) cumulants maintain the properties of the SD Qn’s: Extensivity: d1d2 . . . di ρi c (1, 2, . . . i) = N. Recurrence: di ρi c (1, 2, . . . , i) = ρi−1 c (1, 2, . . . , i − 1) cumulants are generators of n-th order fluctuations of the Na center populations: Statistical view of bonding. Na , Nab , Nabc , etc ⇒ multi-center indices. AMP (QCG@UniOvi) M2 2013 September 2013 10 / 25