Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Generalized Population Analysis I

qcgo
September 03, 2013

Generalized Population Analysis I

qcgo

September 03, 2013
Tweet

More Decks by qcgo

Other Decks in Education

Transcript

  1. Generalized Population Analysis (I) Ángel Martín Pendás Quantum Chemistry Group

    Universidad de Oviedo Spain Madrid 2013 AMP (QCG@UniOvi) M2 2013 Sep 2013 1 / 6
  2. Basic Aspects 1-Det Orbital model: Ψ = |φ1 . .

    . φN | Linear Variational Procedure: φi = µ ciµ χµ Minimal Basis: µ ≡ electron. χµ atom centered. χν |χµ = Sνµ is key. Example: H+ 2 . χ1 ≡ 1sa , χ2 ≡ 1sb : φ = 1 √ 2(1+S12) (1sa + 1sb ){α, β}. Ψ ≡ φ{α, β}. How to define bonding parameters? Partitioning charges: Mulliken analysis ρ(r1 , r1 ) = N Ψ∗(r1 , . . . , rN )Ψ(r1 , . . . , rN )dr2 . . . drN ρ(r, r) = ρ(r) = i φ∗ i (r)φi (r) = µν Pµν χ∗ ν (r)χµ (r) Pµν = i ciµc∗ iν . N = ρ(r)dr = µν Pµν Sνµ = Tr(PS) = µ (PS)µµ . Na = µ∈a (PS)µµ PS = 1 2(1 + S) 1 1 1 1 1 S S 1 = 1/2 1/2 1/2 1/2 Building orthogonal χ’s, φi = µ ciµ χµ Na = µ∈a Pµµ = ˆ Pa ρ(r)dr = a ρ(r)dr = i a dr φ∗ i φi = i Sa ii AMP (QCG@UniOvi) M2 2013 Sep 2013 3 / 6
  3. Bonding ≡ Overlap −0.3 −0.2 −0.1 0 0.1 0.2 0.3

    0.4 0.5 0.6 0.7 −4 −2 0 2 4 6 ψ / a0 −3/2 z / a0 Symmetrically orthogonalized atomic basis for the H+ 2 molecule Q = PS ≡ P idempotent: Q2 = Q: TrQ = TrQQ = · · · = TrQn = N Partition in pairs, trios, ... of centers. N = µ Qµµ = µν QµνQνµ . Qµν = i ciµ c ∗ iν Na = µ∈a Qµµ = Tra Q = µ∈a,ν∈a QµνQνµ + µ∈a,ν / ∈a QµνQνµ Na = Traa Q2 + b=a Trab Q2 = Naa + b=a Nab Na = i Sa ii Sa ij = µ∈a ciµ cjµ Naa = ij (Sa ij )2 Nab = ij Sa ij Sb ij AMP (QCG@UniOvi) M2 2013 Sep 2013 4 / 6
  4. Bonding ≡ Overlap −0.3 −0.2 −0.1 0 0.1 0.2 0.3

    0.4 0.5 0.6 0.7 −4 −2 0 2 4 6 ψ / a0 −3/2 z / a0 Symmetrically orthogonalized atomic basis for the H+ 2 molecule Q = PS ≡ P idempotent: Q2 = Q: TrQ = TrQQ = · · · = TrQn = N Partition in pairs, trios, ... of centers. N = µ Qµµ = µν QµνQνµ . Qµν = i ciµ c ∗ iν Na = µ∈a Qµµ = Tra Q = µ∈a,ν∈a QµνQνµ + µ∈a,ν / ∈a QµνQνµ Na = Traa Q2 + b=a Trab Q2 = Naa + b=a Nab Na = i Sa ii Sa ij = µ∈a ciµ cjµ Naa = ij (Sa ij )2 Nab = ij Sa ij Sb ij AMP (QCG@UniOvi) M2 2013 Sep 2013 4 / 6
  5. Bonding ≡ Overlap −0.3 −0.2 −0.1 0 0.1 0.2 0.3

    0.4 0.5 0.6 0.7 −4 −2 0 2 4 6 ψ / a0 −3/2 z / a0 Symmetrically orthogonalized atomic basis for the H+ 2 molecule Q = PS ≡ P idempotent: Q2 = Q: TrQ = TrQQ = · · · = TrQn = N Partition in pairs, trios, ... of centers. N = µ Qµµ = µν QµνQνµ . Qµν = i ciµ c ∗ iν Na = µ∈a Qµµ = Tra Q = µ∈a,ν∈a QµνQνµ + µ∈a,ν / ∈a QµνQνµ Na = Traa Q2 + b=a Trab Q2 = Naa + b=a Nab Na = i Sa ii Sa ij = µ∈a ciµ cjµ Naa = ij (Sa ij )2 Nab = ij Sa ij Sb ij AMP (QCG@UniOvi) M2 2013 Sep 2013 4 / 6
  6. Bonding ≡ Overlap −0.3 −0.2 −0.1 0 0.1 0.2 0.3

    0.4 0.5 0.6 0.7 −4 −2 0 2 4 6 ψ / a0 −3/2 z / a0 Symmetrically orthogonalized atomic basis for the H+ 2 molecule Q = PS ≡ P idempotent: Q2 = Q: TrQ = TrQQ = · · · = TrQn = N Partition in pairs, trios, ... of centers. N = µ Qµµ = µν QµνQνµ . Qµν = i ciµ c ∗ iν Na = µ∈a Qµµ = Tra Q = µ∈a,ν∈a QµνQνµ + µ∈a,ν / ∈a QµνQνµ Na = Traa Q2 + b=a Trab Q2 = Naa + b=a Nab Na = i Sa ii Sa ij = µ∈a ciµ cjµ Naa = ij (Sa ij )2 Nab = ij Sa ij Sb ij AMP (QCG@UniOvi) M2 2013 Sep 2013 4 / 6
  7. Bonding ≡ Overlap −0.3 −0.2 −0.1 0 0.1 0.2 0.3

    0.4 0.5 0.6 0.7 −4 −2 0 2 4 6 ψ / a0 −3/2 z / a0 Symmetrically orthogonalized atomic basis for the H+ 2 molecule Q = PS ≡ P idempotent: Q2 = Q: TrQ = TrQQ = · · · = TrQn = N Partition in pairs, trios, ... of centers. N = µ Qµµ = µν QµνQνµ . Qµν = i ciµ c ∗ iν Na = µ∈a Qµµ = Tra Q = µ∈a,ν∈a QµνQνµ + µ∈a,ν / ∈a QµνQνµ Na = Traa Q2 + b=a Trab Q2 = Naa + b=a Nab Na = i Sa ii Sa ij = µ∈a ciµ cjµ Naa = ij (Sa ij )2 Nab = ij Sa ij Sb ij AMP (QCG@UniOvi) M2 2013 Sep 2013 4 / 6
  8. Bonding ≡ Overlap −0.3 −0.2 −0.1 0 0.1 0.2 0.3

    0.4 0.5 0.6 0.7 −4 −2 0 2 4 6 ψ / a0 −3/2 z / a0 Symmetrically orthogonalized atomic basis for the H+ 2 molecule Q = PS ≡ P idempotent: Q2 = Q: TrQ = TrQQ = · · · = TrQn = N Partition in pairs, trios, ... of centers. N = µ Qµµ = µν QµνQνµ . Qµν = i ciµ c ∗ iν Na = µ∈a Qµµ = Tra Q = µ∈a,ν∈a QµνQνµ + µ∈a,ν / ∈a QµνQνµ Na = Traa Q2 + b=a Trab Q2 = Naa + b=a Nab Na = i Sa ii Sa ij = µ∈a ciµ cjµ Naa = ij (Sa ij )2 Nab = ij Sa ij Sb ij AMP (QCG@UniOvi) M2 2013 Sep 2013 4 / 6
  9. Bonding ≡ Overlap ≡ Delocalization −0.3 −0.2 −0.1 0 0.1

    0.2 0.3 0.4 0.5 0.6 0.7 −4 −2 0 2 4 6 ψ / a0 −3/2 z / a0 Symmetrically orthogonalized atomic basis for the H+ 2 molecule Nab = 0 ⇔ ciµ ciν = 0 en a, b ⇔ delocalized electrons Q = 1/2 1/2 1/2 1/2 .Naa = Q11 Q11 = 1/4. Nab = Q12 Q21 = 1/4. 2Nab = δab : Wiberg-Mayer bond order. AMP (QCG@UniOvi) M2 2013 Sep 2013 5 / 6
  10. Bonding ≡ Overlap ≡ Delocalization −0.3 −0.2 −0.1 0 0.1

    0.2 0.3 0.4 0.5 0.6 0.7 −4 −2 0 2 4 6 ψ / a0 −3/2 z / a0 Symmetrically orthogonalized atomic basis for the H+ 2 molecule Nab = 0 ⇔ ciµ ciν = 0 en a, b ⇔ delocalized electrons Q = 1/2 1/2 1/2 1/2 .Naa = Q11 Q11 = 1/4. Nab = Q12 Q21 = 1/4. 2Nab = δab : Wiberg-Mayer bond order. AMP (QCG@UniOvi) M2 2013 Sep 2013 5 / 6
  11. Bonding ≡ Overlap ≡ Delocalization −0.3 −0.2 −0.1 0 0.1

    0.2 0.3 0.4 0.5 0.6 0.7 −4 −2 0 2 4 6 ψ / a0 −3/2 z / a0 Symmetrically orthogonalized atomic basis for the H+ 2 molecule Nab = 0 ⇔ ciµ ciν = 0 en a, b ⇔ delocalized electrons Q = 1/2 1/2 1/2 1/2 .Naa = Q11 Q11 = 1/4. Nab = Q12 Q21 = 1/4. 2Nab = δab : Wiberg-Mayer bond order. AMP (QCG@UniOvi) M2 2013 Sep 2013 5 / 6
  12. Bonding ≡ Overlap ≡ Delocalization Multicenter delocalization is treated on

    equal footing. H2+ 3 : φ = 1 √ 3(1+2S) (1sa + 1sb + 1sc ) Q =   1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3   a b c a b c a b c Na = 1/3 Nab = 1/32 = 1/9 Nabc = 2 × 1/33 = 2/27 Three center delocalization (bonding). The number of delocalization channels is important. AMP (QCG@UniOvi) M2 2013 Sep 2013 6 / 6
  13. Bonding ≡ Overlap ≡ Delocalization Multicenter delocalization is treated on

    equal footing. H2+ 3 : φ = 1 √ 3(1+2S) (1sa + 1sb + 1sc ) Q =   1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3   a b c a b c a b c Na = 1/3 Nab = 1/32 = 1/9 Nabc = 2 × 1/33 = 2/27 Three center delocalization (bonding). The number of delocalization channels is important. AMP (QCG@UniOvi) M2 2013 Sep 2013 6 / 6
  14. Bonding ≡ Overlap ≡ Delocalization Multicenter delocalization is treated on

    equal footing. H2+ 3 : φ = 1 √ 3(1+2S) (1sa + 1sb + 1sc ) Q =   1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3   a b c a b c a b c Na = 1/3 Nab = 1/32 = 1/9 Nabc = 2 × 1/33 = 2/27 Three center delocalization (bonding). The number of delocalization channels is important. AMP (QCG@UniOvi) M2 2013 Sep 2013 6 / 6