Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Mass of M31
Search
Dan Foreman-Mackey
July 25, 2012
Science
0
170
The Mass of M31
Dan Foreman-Mackey
July 25, 2012
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
170
Open Software for Astrophysics, AAS241
dfm
2
570
My research talk for CCA promotion
dfm
1
790
Astronomical software
dfm
1
750
emcee-odi
dfm
1
690
Exoplanet population inference: a tutorial
dfm
3
480
Data-driven discovery in the astronomical time domain
dfm
6
740
TensorFlow for astronomers
dfm
6
840
How to find a transiting exoplanets
dfm
1
490
Other Decks in Science
See All in Science
My Little Monster
juzishuu
0
340
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
220
知能とはなにかーヒトとAIのあいだー
tagtag
0
130
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
400
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
130
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
420
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
150
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
130
データマイニング - グラフデータと経路
trycycle
PRO
1
260
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
Featured
See All Featured
How to Talk to Developers About Accessibility
jct
1
85
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
94
Testing 201, or: Great Expectations
jmmastey
46
7.8k
The SEO Collaboration Effect
kristinabergwall1
0
310
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.1k
ラッコキーワード サービス紹介資料
rakko
0
1.8M
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
100
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
90
Automating Front-end Workflow
addyosmani
1371
200k
Discover your Explorer Soul
emna__ayadi
2
1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Transcript
THE MASS OF M31 THE FULLY SELF-CONSISTENT DYNAMICAL MODEL GALAXY
COFFEE MPIA 2012
DAN FOREMAN-MACKEY DANFM.CA GITHUB.COM/DFM NEW YORK UNIVERSITY LARRY WIDROW WITH:
QUEEN'S UNIVERSITY, CANADA
WHAT DO WE WANT TO DO? BUILD A TOOL FOR
DYNAMICAL MODELING OF DISK GALAXIES USING ALL AVAILABLE DATASET SELF-CONSISTENTLY PHYSICALLY MOTIVATED i.e. not mass modeling...
WHAT HAVE WE DONE? BUILT A MODEL OF ANDROMEDA USING
A LOT OF DATASETS SELF-CONSISTENTLY PHYSICALLY MOTIVATED * *WAIT TWO SLIDES
van der Marel & Guhathakurta (2008) Widrow, Pym & Dubinski
(2005) Evans & Wilkinson (2000) Kuijken & Dubinski (1995) WHERE DOES THIS COME FROM?
Radius HI-rotation curve Corbelli et al. (2010) surface brightness profile
Barmby et al. (2006) satellite galaxy kinematics PAndAS, SPLASH, et al. Conn et al. (2011, in prep) ~10 kpc ~500 kpc Data PLUS: HALO STARS GLOBULAR CLUSTERS PLANETARY NEBULAE ETC.
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function 19 Parameters
Generative Model Likelihood Function ☁ x
Generative Model Likelihood Function ☁ x emceethe MCMC Hammer arxiv.org/abs/1202.3665
danfm.ca/emcee github.com/dfm/emcee paper documentation issues/contributions
40 60 80 100 120 140 160 R [arcmin] 180
200 220 240 260 280 300 320 vcirc [km s 1] 100 101 102 R [arcmin] 15 16 17 18 19 20 21 22 23 24 µ [mag arcsec 2]
None
BONUS
BONUS