$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Mass of M31
Search
Dan Foreman-Mackey
July 25, 2012
Science
0
170
The Mass of M31
Dan Foreman-Mackey
July 25, 2012
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
170
Open Software for Astrophysics, AAS241
dfm
2
570
My research talk for CCA promotion
dfm
1
790
Astronomical software
dfm
1
750
emcee-odi
dfm
1
690
Exoplanet population inference: a tutorial
dfm
3
480
Data-driven discovery in the astronomical time domain
dfm
6
740
TensorFlow for astronomers
dfm
6
840
How to find a transiting exoplanets
dfm
1
490
Other Decks in Science
See All in Science
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
150
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
610
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
150
Distributional Regression
tackyas
0
240
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
290
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
140
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
知能とはなにかーヒトとAIのあいだー
tagtag
0
130
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
Lean4による汎化誤差評価の形式化
milano0017
1
390
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
28
Agile that works and the tools we love
rasmusluckow
331
21k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Statistics for Hackers
jakevdp
799
230k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
The SEO Collaboration Effect
kristinabergwall1
0
310
Believing is Seeing
oripsolob
0
15
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
34
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
94
Transcript
THE MASS OF M31 THE FULLY SELF-CONSISTENT DYNAMICAL MODEL GALAXY
COFFEE MPIA 2012
DAN FOREMAN-MACKEY DANFM.CA GITHUB.COM/DFM NEW YORK UNIVERSITY LARRY WIDROW WITH:
QUEEN'S UNIVERSITY, CANADA
WHAT DO WE WANT TO DO? BUILD A TOOL FOR
DYNAMICAL MODELING OF DISK GALAXIES USING ALL AVAILABLE DATASET SELF-CONSISTENTLY PHYSICALLY MOTIVATED i.e. not mass modeling...
WHAT HAVE WE DONE? BUILT A MODEL OF ANDROMEDA USING
A LOT OF DATASETS SELF-CONSISTENTLY PHYSICALLY MOTIVATED * *WAIT TWO SLIDES
van der Marel & Guhathakurta (2008) Widrow, Pym & Dubinski
(2005) Evans & Wilkinson (2000) Kuijken & Dubinski (1995) WHERE DOES THIS COME FROM?
Radius HI-rotation curve Corbelli et al. (2010) surface brightness profile
Barmby et al. (2006) satellite galaxy kinematics PAndAS, SPLASH, et al. Conn et al. (2011, in prep) ~10 kpc ~500 kpc Data PLUS: HALO STARS GLOBULAR CLUSTERS PLANETARY NEBULAE ETC.
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function 19 Parameters
Generative Model Likelihood Function ☁ x
Generative Model Likelihood Function ☁ x emceethe MCMC Hammer arxiv.org/abs/1202.3665
danfm.ca/emcee github.com/dfm/emcee paper documentation issues/contributions
40 60 80 100 120 140 160 R [arcmin] 180
200 220 240 260 280 300 320 vcirc [km s 1] 100 101 102 R [arcmin] 15 16 17 18 19 20 21 22 23 24 µ [mag arcsec 2]
None
BONUS
BONUS