Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Mass of M31
Search
Dan Foreman-Mackey
July 25, 2012
Science
0
160
The Mass of M31
Dan Foreman-Mackey
July 25, 2012
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
140
Open Software for Astrophysics, AAS241
dfm
2
530
My research talk for CCA promotion
dfm
1
770
Astronomical software
dfm
1
720
emcee-odi
dfm
1
650
Exoplanet population inference: a tutorial
dfm
3
450
Data-driven discovery in the astronomical time domain
dfm
6
710
TensorFlow for astronomers
dfm
6
800
How to find a transiting exoplanets
dfm
1
460
Other Decks in Science
See All in Science
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
450
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
740
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.8k
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
430
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
350
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
180
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
160
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
470
データベース01: データベースを使わない世界
trycycle
PRO
1
650
Ignite の1年間の軌跡
ktombow
0
130
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.2k
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
680
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
33
5.9k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
How GitHub (no longer) Works
holman
314
140k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
Rails Girls Zürich Keynote
gr2m
94
14k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The Pragmatic Product Professional
lauravandoore
35
6.7k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Transcript
THE MASS OF M31 THE FULLY SELF-CONSISTENT DYNAMICAL MODEL GALAXY
COFFEE MPIA 2012
DAN FOREMAN-MACKEY DANFM.CA GITHUB.COM/DFM NEW YORK UNIVERSITY LARRY WIDROW WITH:
QUEEN'S UNIVERSITY, CANADA
WHAT DO WE WANT TO DO? BUILD A TOOL FOR
DYNAMICAL MODELING OF DISK GALAXIES USING ALL AVAILABLE DATASET SELF-CONSISTENTLY PHYSICALLY MOTIVATED i.e. not mass modeling...
WHAT HAVE WE DONE? BUILT A MODEL OF ANDROMEDA USING
A LOT OF DATASETS SELF-CONSISTENTLY PHYSICALLY MOTIVATED * *WAIT TWO SLIDES
van der Marel & Guhathakurta (2008) Widrow, Pym & Dubinski
(2005) Evans & Wilkinson (2000) Kuijken & Dubinski (1995) WHERE DOES THIS COME FROM?
Radius HI-rotation curve Corbelli et al. (2010) surface brightness profile
Barmby et al. (2006) satellite galaxy kinematics PAndAS, SPLASH, et al. Conn et al. (2011, in prep) ~10 kpc ~500 kpc Data PLUS: HALO STARS GLOBULAR CLUSTERS PLANETARY NEBULAE ETC.
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function 19 Parameters
Generative Model Likelihood Function ☁ x
Generative Model Likelihood Function ☁ x emceethe MCMC Hammer arxiv.org/abs/1202.3665
danfm.ca/emcee github.com/dfm/emcee paper documentation issues/contributions
40 60 80 100 120 140 160 R [arcmin] 180
200 220 240 260 280 300 320 vcirc [km s 1] 100 101 102 R [arcmin] 15 16 17 18 19 20 21 22 23 24 µ [mag arcsec 2]
None
BONUS
BONUS