Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Mass of M31
Search
Dan Foreman-Mackey
July 25, 2012
Science
0
160
The Mass of M31
Dan Foreman-Mackey
July 25, 2012
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
150
Open Software for Astrophysics, AAS241
dfm
2
550
My research talk for CCA promotion
dfm
1
790
Astronomical software
dfm
1
740
emcee-odi
dfm
1
680
Exoplanet population inference: a tutorial
dfm
3
460
Data-driven discovery in the astronomical time domain
dfm
6
720
TensorFlow for astronomers
dfm
6
820
How to find a transiting exoplanets
dfm
1
470
Other Decks in Science
See All in Science
データマイニング - コミュニティ発見
trycycle
PRO
0
160
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
870
知能とはなにかーヒトとAIのあいだー
tagtag
0
150
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
130
データベース02: データベースの概念
trycycle
PRO
2
930
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
500
Machine Learning for Materials (Challenge)
aronwalsh
0
350
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.1k
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
200
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
17k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
150
CV_5_3dVision
hachama
0
150
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
930
Git: the NoSQL Database
bkeepers
PRO
431
66k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
The Cult of Friendly URLs
andyhume
79
6.6k
BBQ
matthewcrist
89
9.9k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Optimizing for Happiness
mojombo
379
70k
GraphQLとの向き合い方2022年版
quramy
49
14k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Writing Fast Ruby
sferik
630
62k
Transcript
THE MASS OF M31 THE FULLY SELF-CONSISTENT DYNAMICAL MODEL GALAXY
COFFEE MPIA 2012
DAN FOREMAN-MACKEY DANFM.CA GITHUB.COM/DFM NEW YORK UNIVERSITY LARRY WIDROW WITH:
QUEEN'S UNIVERSITY, CANADA
WHAT DO WE WANT TO DO? BUILD A TOOL FOR
DYNAMICAL MODELING OF DISK GALAXIES USING ALL AVAILABLE DATASET SELF-CONSISTENTLY PHYSICALLY MOTIVATED i.e. not mass modeling...
WHAT HAVE WE DONE? BUILT A MODEL OF ANDROMEDA USING
A LOT OF DATASETS SELF-CONSISTENTLY PHYSICALLY MOTIVATED * *WAIT TWO SLIDES
van der Marel & Guhathakurta (2008) Widrow, Pym & Dubinski
(2005) Evans & Wilkinson (2000) Kuijken & Dubinski (1995) WHERE DOES THIS COME FROM?
Radius HI-rotation curve Corbelli et al. (2010) surface brightness profile
Barmby et al. (2006) satellite galaxy kinematics PAndAS, SPLASH, et al. Conn et al. (2011, in prep) ~10 kpc ~500 kpc Data PLUS: HALO STARS GLOBULAR CLUSTERS PLANETARY NEBULAE ETC.
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function 19 Parameters
Generative Model Likelihood Function ☁ x
Generative Model Likelihood Function ☁ x emceethe MCMC Hammer arxiv.org/abs/1202.3665
danfm.ca/emcee github.com/dfm/emcee paper documentation issues/contributions
40 60 80 100 120 140 160 R [arcmin] 180
200 220 240 260 280 300 320 vcirc [km s 1] 100 101 102 R [arcmin] 15 16 17 18 19 20 21 22 23 24 µ [mag arcsec 2]
None
BONUS
BONUS