Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Mass of M31
Search
Dan Foreman-Mackey
July 25, 2012
Science
0
160
The Mass of M31
Dan Foreman-Mackey
July 25, 2012
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
110
Open Software for Astrophysics, AAS241
dfm
2
470
My research talk for CCA promotion
dfm
1
740
Astronomical software
dfm
1
690
emcee-odi
dfm
1
600
Exoplanet population inference: a tutorial
dfm
3
420
Data-driven discovery in the astronomical time domain
dfm
6
680
TensorFlow for astronomers
dfm
6
730
How to find a transiting exoplanets
dfm
1
440
Other Decks in Science
See All in Science
プロダクト開発を通して学んだナレッジマネジメントの哲学
sonod
0
150
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
110
(2024) Livres, Femmes et Math
mansuy
0
110
Machine Learning for Materials (Lecture 7)
aronwalsh
0
820
Celebrate UTIG: Staff and Student Awards 2024
utig
0
460
Online Feedback Optimization
floriandoerfler
0
310
ベイズのはなし
techmathproject
0
290
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
110
ベイズ最適化をゼロから
brainpadpr
2
810
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.5k
学術講演会中央大学学員会八王子支部
tagtag
0
230
(Forkwell Library #48)『詳解 インシデントレスポンス』で学び倒すブルーチーム技術
scientia
2
1.4k
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
GraphQLとの向き合い方2022年版
quramy
43
13k
GitHub's CSS Performance
jonrohan
1030
460k
YesSQL, Process and Tooling at Scale
rocio
169
14k
How to Ace a Technical Interview
jacobian
276
23k
10 Git Anti Patterns You Should be Aware of
lemiorhan
655
59k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
329
21k
Transcript
THE MASS OF M31 THE FULLY SELF-CONSISTENT DYNAMICAL MODEL GALAXY
COFFEE MPIA 2012
DAN FOREMAN-MACKEY DANFM.CA GITHUB.COM/DFM NEW YORK UNIVERSITY LARRY WIDROW WITH:
QUEEN'S UNIVERSITY, CANADA
WHAT DO WE WANT TO DO? BUILD A TOOL FOR
DYNAMICAL MODELING OF DISK GALAXIES USING ALL AVAILABLE DATASET SELF-CONSISTENTLY PHYSICALLY MOTIVATED i.e. not mass modeling...
WHAT HAVE WE DONE? BUILT A MODEL OF ANDROMEDA USING
A LOT OF DATASETS SELF-CONSISTENTLY PHYSICALLY MOTIVATED * *WAIT TWO SLIDES
van der Marel & Guhathakurta (2008) Widrow, Pym & Dubinski
(2005) Evans & Wilkinson (2000) Kuijken & Dubinski (1995) WHERE DOES THIS COME FROM?
Radius HI-rotation curve Corbelli et al. (2010) surface brightness profile
Barmby et al. (2006) satellite galaxy kinematics PAndAS, SPLASH, et al. Conn et al. (2011, in prep) ~10 kpc ~500 kpc Data PLUS: HALO STARS GLOBULAR CLUSTERS PLANETARY NEBULAE ETC.
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function
GALACTICS f(E, Lz, Ez) = fh(E) + fb(E) + fd(E,
LzEz) ⇢(r, z) = ⇢h( (r, z)) + ⇢b( (r, z)) + ⇢d(r, z) r2 = 4 ⇡ G ⇢ Generative Model Likelihood Function 19 Parameters
Generative Model Likelihood Function ☁ x
Generative Model Likelihood Function ☁ x emceethe MCMC Hammer arxiv.org/abs/1202.3665
danfm.ca/emcee github.com/dfm/emcee paper documentation issues/contributions
40 60 80 100 120 140 160 R [arcmin] 180
200 220 240 260 280 300 320 vcirc [km s 1] 100 101 102 R [arcmin] 15 16 17 18 19 20 21 22 23 24 µ [mag arcsec 2]
None
BONUS
BONUS