Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My research talk for CCA promotion
Search
Dan Foreman-Mackey
February 03, 2022
Science
1
750
My research talk for CCA promotion
A summary of what I've been up to for the past few years and where my research program is going.
Dan Foreman-Mackey
February 03, 2022
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
110
Open Software for Astrophysics, AAS241
dfm
2
470
Astronomical software
dfm
1
700
emcee-odi
dfm
1
610
Exoplanet population inference: a tutorial
dfm
3
420
Data-driven discovery in the astronomical time domain
dfm
6
690
TensorFlow for astronomers
dfm
6
750
How to find a transiting exoplanets
dfm
1
450
Long-period transiting exoplanets
dfm
1
300
Other Decks in Science
See All in Science
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
600
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
250
大規模言語モデルの開発
chokkan
PRO
84
35k
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
200
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
640
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1k
教師なしテンソル分解に基づく、有糸分裂後の転写再活性化におけるヒストン修飾ブックマークとしての転写因子候補の抽出法
tagtag
0
130
DEIM2024 チュートリアル ~AWSで生成AIのRAGを使ったチャットボットを作ってみよう~
yamahiro
3
1.4k
240510 COGNAC LabChat
kazh
0
160
マクロ経済学の視点で、財政健全化は必要か
ryo18cm
1
100
Machine Learning for Materials (Lecture 9)
aronwalsh
0
240
ABEMAの効果検証事例〜効果の異質性を考える〜
s1ok69oo
4
2.1k
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Typedesign – Prime Four
hannesfritz
40
2.4k
Navigating Team Friction
lara
183
15k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
Music & Morning Musume
bryan
46
6.2k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
5
440
The World Runs on Bad Software
bkeepers
PRO
65
11k
4 Signs Your Business is Dying
shpigford
181
21k
How STYLIGHT went responsive
nonsquared
95
5.2k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Done Done
chrislema
181
16k
Become a Pro
speakerdeck
PRO
26
5k
Transcript
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS by Dan Foreman-Mackey
who am I? / / what’ve I been up to?
1
7 [1] solving Hard™ data analysis problems [2] enabling and
empowering astrophysicists
implementation.
data = > physics
open source software for astrophysics 2
why?
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
my open source contributions 3
None
gaussian processes 4
p(data|physics)
data ~ N(model; noise)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
data ~ N(model; noise)
data ~ N(model; noise)
so. why not?
data ~ N(model; noise)
None
reference: Ambikasaran, DFM+ (2015)
None
reference: Ambikasaran, DFM+ (2015)
reference: DFM, Agol, Ambikasaran, Angus (2017); DFM (2018); DFM, Luger,
et al. (2021)
None
reference: Gordon, Agol, DFM (2020)
what’s next?
None
None
None
credit: Quang Tran
reference: Luger, DFM, Hedges (2021)
probabilistic inference 5
p(data|physics)
have: physics = > data
want: data = > physics
integral of the form f(physics) p(physics|data) dphysics
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
gradients!
dp(data|physics) / dphysics
automatic differentiation aka “backpropagation”
your model is just code
apply the chain rule
apply the chain rule over and over again . .
.
sounds silly?
it's not! (mostly)
None
None
what’s next?
None
jax.readthedocs.io
my approach to open source 6
None
[1] don’t underestimate users [2] build libraries, not (just) scripts
[3] teach by example
None
None
None
bringing open source practices to research more generally
None
None
None
None
what’s next? 7
7 [1] inference with stochastic or intractable models [2] what
can we do to better support open source in astrophysics
7
7 credit: Adrian Price-Whelan
many fundamental software packages have a shockingly small number of
maintainers.
a selection of some* CCA-supported software: * my apologies for
neglecting your favorites!
None
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS @ CCA