Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My research talk for CCA promotion
Search
Dan Foreman-Mackey
February 03, 2022
Science
1
790
My research talk for CCA promotion
A summary of what I've been up to for the past few years and where my research program is going.
Dan Foreman-Mackey
February 03, 2022
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
170
Open Software for Astrophysics, AAS241
dfm
2
570
Astronomical software
dfm
1
760
emcee-odi
dfm
1
700
Exoplanet population inference: a tutorial
dfm
3
480
Data-driven discovery in the astronomical time domain
dfm
6
740
TensorFlow for astronomers
dfm
6
850
How to find a transiting exoplanets
dfm
1
490
Long-period transiting exoplanets
dfm
1
330
Other Decks in Science
See All in Science
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
170
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
500
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
1
230
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
データベース03: 関係データモデル
trycycle
PRO
1
330
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.4k
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
220
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
110
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
410
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
140
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
350
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1371
200k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
150
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
560
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Building the Perfect Custom Keyboard
takai
2
670
Code Review Best Practice
trishagee
74
19k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
620
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
230
GraphQLとの向き合い方2022年版
quramy
50
14k
Transcript
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS by Dan Foreman-Mackey
who am I? / / what’ve I been up to?
1
7 [1] solving Hard™ data analysis problems [2] enabling and
empowering astrophysicists
implementation.
data = > physics
open source software for astrophysics 2
why?
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
my open source contributions 3
None
gaussian processes 4
p(data|physics)
data ~ N(model; noise)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
data ~ N(model; noise)
data ~ N(model; noise)
so. why not?
data ~ N(model; noise)
None
reference: Ambikasaran, DFM+ (2015)
None
reference: Ambikasaran, DFM+ (2015)
reference: DFM, Agol, Ambikasaran, Angus (2017); DFM (2018); DFM, Luger,
et al. (2021)
None
reference: Gordon, Agol, DFM (2020)
what’s next?
None
None
None
credit: Quang Tran
reference: Luger, DFM, Hedges (2021)
probabilistic inference 5
p(data|physics)
have: physics = > data
want: data = > physics
integral of the form f(physics) p(physics|data) dphysics
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
gradients!
dp(data|physics) / dphysics
automatic differentiation aka “backpropagation”
your model is just code
apply the chain rule
apply the chain rule over and over again . .
.
sounds silly?
it's not! (mostly)
None
None
what’s next?
None
jax.readthedocs.io
my approach to open source 6
None
[1] don’t underestimate users [2] build libraries, not (just) scripts
[3] teach by example
None
None
None
bringing open source practices to research more generally
None
None
None
None
what’s next? 7
7 [1] inference with stochastic or intractable models [2] what
can we do to better support open source in astrophysics
7
7 credit: Adrian Price-Whelan
many fundamental software packages have a shockingly small number of
maintainers.
a selection of some* CCA-supported software: * my apologies for
neglecting your favorites!
None
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS @ CCA