Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My research talk for CCA promotion
Search
Dan Foreman-Mackey
February 03, 2022
Science
1
800
My research talk for CCA promotion
A summary of what I've been up to for the past few years and where my research program is going.
Dan Foreman-Mackey
February 03, 2022
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
180
Open Software for Astrophysics, AAS241
dfm
2
570
Astronomical software
dfm
1
760
emcee-odi
dfm
1
700
Exoplanet population inference: a tutorial
dfm
3
490
Data-driven discovery in the astronomical time domain
dfm
6
740
TensorFlow for astronomers
dfm
6
850
How to find a transiting exoplanets
dfm
1
490
Long-period transiting exoplanets
dfm
1
330
Other Decks in Science
See All in Science
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
NDCG is NOT All I Need
statditto
2
2.8k
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
160
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
120
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
400
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
370
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
170
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
530
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
880
Lean4による汎化誤差評価の形式化
milano0017
1
430
Algorithmic Aspects of Quiver Representations
tasusu
0
190
Vibecoding for Product Managers
ibknadedeji
0
130
Featured
See All Featured
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
90
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
320
Building Adaptive Systems
keathley
44
2.9k
Building the Perfect Custom Keyboard
takai
2
680
How to make the Groovebox
asonas
2
1.9k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
49
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
99
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
94
Transcript
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS by Dan Foreman-Mackey
who am I? / / what’ve I been up to?
1
7 [1] solving Hard™ data analysis problems [2] enabling and
empowering astrophysicists
implementation.
data = > physics
open source software for astrophysics 2
why?
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
my open source contributions 3
None
gaussian processes 4
p(data|physics)
data ~ N(model; noise)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
data ~ N(model; noise)
data ~ N(model; noise)
so. why not?
data ~ N(model; noise)
None
reference: Ambikasaran, DFM+ (2015)
None
reference: Ambikasaran, DFM+ (2015)
reference: DFM, Agol, Ambikasaran, Angus (2017); DFM (2018); DFM, Luger,
et al. (2021)
None
reference: Gordon, Agol, DFM (2020)
what’s next?
None
None
None
credit: Quang Tran
reference: Luger, DFM, Hedges (2021)
probabilistic inference 5
p(data|physics)
have: physics = > data
want: data = > physics
integral of the form f(physics) p(physics|data) dphysics
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
gradients!
dp(data|physics) / dphysics
automatic differentiation aka “backpropagation”
your model is just code
apply the chain rule
apply the chain rule over and over again . .
.
sounds silly?
it's not! (mostly)
None
None
what’s next?
None
jax.readthedocs.io
my approach to open source 6
None
[1] don’t underestimate users [2] build libraries, not (just) scripts
[3] teach by example
None
None
None
bringing open source practices to research more generally
None
None
None
None
what’s next? 7
7 [1] inference with stochastic or intractable models [2] what
can we do to better support open source in astrophysics
7
7 credit: Adrian Price-Whelan
many fundamental software packages have a shockingly small number of
maintainers.
a selection of some* CCA-supported software: * my apologies for
neglecting your favorites!
None
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS @ CCA