Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open software for Astronomical Data Analysis
Search
Dan Foreman-Mackey
February 28, 2023
Science
0
120
Open software for Astronomical Data Analysis
@ NASA Goddard
Dan Foreman-Mackey
February 28, 2023
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open Software for Astrophysics, AAS241
dfm
2
480
My research talk for CCA promotion
dfm
1
750
Astronomical software
dfm
1
700
emcee-odi
dfm
1
610
Exoplanet population inference: a tutorial
dfm
3
430
Data-driven discovery in the astronomical time domain
dfm
6
690
TensorFlow for astronomers
dfm
6
760
How to find a transiting exoplanets
dfm
1
450
Long-period transiting exoplanets
dfm
1
300
Other Decks in Science
See All in Science
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
110
butterfly_effect/butterfly_effect_in-house
florets1
1
130
WCS-LA-2024
lcolladotor
0
160
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.3k
拡散モデルの原理紹介
brainpadpr
3
5.4k
How were Quaternion discovered
kinakomoti321
2
1.1k
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
700
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
140
HAS Dark Site Orientation
astronomyhouston
0
5.5k
Transformers are Universal in Context Learners
gpeyre
0
650
Inductive-bias Learning: 大規模言語モデルによる予測モデルの生成
fuyu_quant0
0
140
LIMEを用いた判断根拠の可視化
kentaitakura
0
400
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Mobile First: as difficult as doing things right
swwweet
222
9k
Designing for humans not robots
tammielis
250
25k
Raft: Consensus for Rubyists
vanstee
137
6.7k
A designer walks into a library…
pauljervisheath
205
24k
RailsConf 2023
tenderlove
29
970
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Fireside Chat
paigeccino
34
3.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
860
Become a Pro
speakerdeck
PRO
26
5.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Transcript
OPEN SOFTWARE FOR ASTRONOMICAL DATA ANALYSIS by Dan Foreman-Mackey
None
open software for astrophysics 0
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
7
many fundamental software packages have a shockingly small number of
maintainers.
7 credit: Adrian Price-Whelan
* astronomical software can be very high impact * we
should think about career trajectories & mechanisms for supporting this work
None
case study: gaussian processes 1
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022) ignoring correlated noise accounting for
correlated noise
reference: Aigrain & DFM (2022)
a Gaussian Process is a drop - in replacement for
chi - squared
more details: Aigrain & Foreman-Mackey (2023) arXiv:2209.08940
None
7 [1] model building [2] computational cost
reference: Luger, DFM, Hedges (2021)
[2] computational cost
7 [1] bigger/better computers [2] exploit matrix structure [3] approximate
linear algebra [4] etc.
1 3 2
None
None
1 3 2
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Gordon, Agol, DFM (2020) / tinygp.readthedocs.io
* a Gaussian Process is a drop - in replacement
for chi squared * model building & computational cost are (solvable!) challenges * you should check out tinygp!
case study: probabilistic inference 2
have: physics = > data
want: data = > physics
7 [1] physical models [2] legacy code
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
3.0 3.5 4.0 4.5 5.0 Wavelength [micron] 2.05 2.10 2.15
2.20 2.25 2.30 Transit Depth [%] Alderson et al. 2023 Joint Fit (N = 50) reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in prep) WASP-39b / NIRSpec
reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in
prep) showing 23 of the 404 parameters (8 per channel + 4 shared)
how?
d(physics = > data) / dphysics
automatic differentiation aka “backpropagation”
None
7 [1] physical models [2] legacy code
7 [1] domain - specif i c libraries [2] emulation
None
* gradient - based inference using autodiff can improve eff
i ciency * there are practical challenges with these methods in astro * of interest: domain - specif i c libraries & emulation
aside: JAX 3
None
import numpy as np def linear_least_squares(x, y) : A =
np.vander(x, 2) return np.linalg.lstsq(A, y)[0]
import jax.numpy as jnp def linear_least_squares(x, y) : A =
jnp.vander(x, 2) return jnp.linalg.lstsq(A, y)[0]
None
open research practices 4
None
None
None
None
None
None
None
open software is foundational to astrophysics research there are opportunities
at the interface of astro & applied f i elds there are ways you can participate & benef i t right away
7 I want to chat about… [1] your data analysis
problems [2] building astronomical software [3] writing documentation & tutorials
get in touch! dfm.io github.com/dfm