Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open software for Astronomical Data Analysis
Search
Dan Foreman-Mackey
February 28, 2023
Science
0
170
Open software for Astronomical Data Analysis
@ NASA Goddard
Dan Foreman-Mackey
February 28, 2023
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open Software for Astrophysics, AAS241
dfm
2
570
My research talk for CCA promotion
dfm
1
790
Astronomical software
dfm
1
760
emcee-odi
dfm
1
700
Exoplanet population inference: a tutorial
dfm
3
480
Data-driven discovery in the astronomical time domain
dfm
6
740
TensorFlow for astronomers
dfm
6
850
How to find a transiting exoplanets
dfm
1
490
Long-period transiting exoplanets
dfm
1
330
Other Decks in Science
See All in Science
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
KH Coderチュートリアル(スライド版)
koichih
1
57k
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
140
Ignite の1年間の軌跡
ktombow
0
200
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
760
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
21k
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
120
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.4k
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
180
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
470
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
Featured
See All Featured
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
57
Information Architects: The Missing Link in Design Systems
soysaucechin
0
750
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Claude Code のすすめ
schroneko
67
210k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Thoughts on Productivity
jonyablonski
74
5k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
260
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
260
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
OPEN SOFTWARE FOR ASTRONOMICAL DATA ANALYSIS by Dan Foreman-Mackey
None
open software for astrophysics 0
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
7
many fundamental software packages have a shockingly small number of
maintainers.
7 credit: Adrian Price-Whelan
* astronomical software can be very high impact * we
should think about career trajectories & mechanisms for supporting this work
None
case study: gaussian processes 1
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022) ignoring correlated noise accounting for
correlated noise
reference: Aigrain & DFM (2022)
a Gaussian Process is a drop - in replacement for
chi - squared
more details: Aigrain & Foreman-Mackey (2023) arXiv:2209.08940
None
7 [1] model building [2] computational cost
reference: Luger, DFM, Hedges (2021)
[2] computational cost
7 [1] bigger/better computers [2] exploit matrix structure [3] approximate
linear algebra [4] etc.
1 3 2
None
None
1 3 2
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Gordon, Agol, DFM (2020) / tinygp.readthedocs.io
* a Gaussian Process is a drop - in replacement
for chi squared * model building & computational cost are (solvable!) challenges * you should check out tinygp!
case study: probabilistic inference 2
have: physics = > data
want: data = > physics
7 [1] physical models [2] legacy code
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
3.0 3.5 4.0 4.5 5.0 Wavelength [micron] 2.05 2.10 2.15
2.20 2.25 2.30 Transit Depth [%] Alderson et al. 2023 Joint Fit (N = 50) reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in prep) WASP-39b / NIRSpec
reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in
prep) showing 23 of the 404 parameters (8 per channel + 4 shared)
how?
d(physics = > data) / dphysics
automatic differentiation aka “backpropagation”
None
7 [1] physical models [2] legacy code
7 [1] domain - specif i c libraries [2] emulation
None
* gradient - based inference using autodiff can improve eff
i ciency * there are practical challenges with these methods in astro * of interest: domain - specif i c libraries & emulation
aside: JAX 3
None
import numpy as np def linear_least_squares(x, y) : A =
np.vander(x, 2) return np.linalg.lstsq(A, y)[0]
import jax.numpy as jnp def linear_least_squares(x, y) : A =
jnp.vander(x, 2) return jnp.linalg.lstsq(A, y)[0]
None
open research practices 4
None
None
None
None
None
None
None
open software is foundational to astrophysics research there are opportunities
at the interface of astro & applied f i elds there are ways you can participate & benef i t right away
7 I want to chat about… [1] your data analysis
problems [2] building astronomical software [3] writing documentation & tutorials
get in touch! dfm.io github.com/dfm