Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open software for Astronomical Data Analysis
Search
Dan Foreman-Mackey
February 28, 2023
Science
0
160
Open software for Astronomical Data Analysis
@ NASA Goddard
Dan Foreman-Mackey
February 28, 2023
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open Software for Astrophysics, AAS241
dfm
2
550
My research talk for CCA promotion
dfm
1
790
Astronomical software
dfm
1
740
emcee-odi
dfm
1
680
Exoplanet population inference: a tutorial
dfm
3
470
Data-driven discovery in the astronomical time domain
dfm
6
730
TensorFlow for astronomers
dfm
6
830
How to find a transiting exoplanets
dfm
1
470
Long-period transiting exoplanets
dfm
1
320
Other Decks in Science
See All in Science
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
150
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1k
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.3k
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
210
Symfony Console Facelift
chalasr
2
480
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
290
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
120
機械学習 - SVM
trycycle
PRO
1
910
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
150
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.2k
Cloudflare Images + Workers KVでお手軽&低コスト画像最適化をしたかった
nenrinyear
0
100
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
130
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Context Engineering - Making Every Token Count
addyosmani
8
340
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Speed Design
sergeychernyshev
32
1.2k
Docker and Python
trallard
46
3.6k
It's Worth the Effort
3n
187
28k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
950
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
640
Transcript
OPEN SOFTWARE FOR ASTRONOMICAL DATA ANALYSIS by Dan Foreman-Mackey
None
open software for astrophysics 0
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
7
many fundamental software packages have a shockingly small number of
maintainers.
7 credit: Adrian Price-Whelan
* astronomical software can be very high impact * we
should think about career trajectories & mechanisms for supporting this work
None
case study: gaussian processes 1
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022) ignoring correlated noise accounting for
correlated noise
reference: Aigrain & DFM (2022)
a Gaussian Process is a drop - in replacement for
chi - squared
more details: Aigrain & Foreman-Mackey (2023) arXiv:2209.08940
None
7 [1] model building [2] computational cost
reference: Luger, DFM, Hedges (2021)
[2] computational cost
7 [1] bigger/better computers [2] exploit matrix structure [3] approximate
linear algebra [4] etc.
1 3 2
None
None
1 3 2
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Gordon, Agol, DFM (2020) / tinygp.readthedocs.io
* a Gaussian Process is a drop - in replacement
for chi squared * model building & computational cost are (solvable!) challenges * you should check out tinygp!
case study: probabilistic inference 2
have: physics = > data
want: data = > physics
7 [1] physical models [2] legacy code
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
3.0 3.5 4.0 4.5 5.0 Wavelength [micron] 2.05 2.10 2.15
2.20 2.25 2.30 Transit Depth [%] Alderson et al. 2023 Joint Fit (N = 50) reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in prep) WASP-39b / NIRSpec
reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in
prep) showing 23 of the 404 parameters (8 per channel + 4 shared)
how?
d(physics = > data) / dphysics
automatic differentiation aka “backpropagation”
None
7 [1] physical models [2] legacy code
7 [1] domain - specif i c libraries [2] emulation
None
* gradient - based inference using autodiff can improve eff
i ciency * there are practical challenges with these methods in astro * of interest: domain - specif i c libraries & emulation
aside: JAX 3
None
import numpy as np def linear_least_squares(x, y) : A =
np.vander(x, 2) return np.linalg.lstsq(A, y)[0]
import jax.numpy as jnp def linear_least_squares(x, y) : A =
jnp.vander(x, 2) return jnp.linalg.lstsq(A, y)[0]
None
open research practices 4
None
None
None
None
None
None
None
open software is foundational to astrophysics research there are opportunities
at the interface of astro & applied f i elds there are ways you can participate & benef i t right away
7 I want to chat about… [1] your data analysis
problems [2] building astronomical software [3] writing documentation & tutorials
get in touch! dfm.io github.com/dfm