$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open Software for Astrophysics, AAS241
Search
Dan Foreman-Mackey
January 12, 2023
Science
2
470
Open Software for Astrophysics, AAS241
Slides for my plenary talk at the 241st American Astronomical Society meeting.
Dan Foreman-Mackey
January 12, 2023
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
110
My research talk for CCA promotion
dfm
1
750
Astronomical software
dfm
1
690
emcee-odi
dfm
1
600
Exoplanet population inference: a tutorial
dfm
3
420
Data-driven discovery in the astronomical time domain
dfm
6
690
TensorFlow for astronomers
dfm
6
740
How to find a transiting exoplanets
dfm
1
450
Long-period transiting exoplanets
dfm
1
300
Other Decks in Science
See All in Science
Introduction to Image Processing: 2.Frequ
hachama
0
190
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
130
ultraArmをモニター提供してもらった話
miura55
0
200
240510 COGNAC LabChat
kazh
0
150
AI科学の何が“哲学”の問題になるのか ~問いマッピングの試み~
rmaruy
1
2.3k
Spectral Sparsification of Hypergraphs
tasusu
0
180
butterfly_effect/butterfly_effect_in-house
florets1
1
110
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
190
Machine Learning for Materials (Lecture 9)
aronwalsh
0
220
ICRA2024 速報
rpc
3
5.4k
統計的因果探索の方法
sshimizu2006
1
1.2k
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
150
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
40
2.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Producing Creativity
orderedlist
PRO
341
39k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
VelocityConf: Rendering Performance Case Studies
addyosmani
326
24k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
Git: the NoSQL Database
bkeepers
PRO
427
64k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
48
2.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
410
Code Reviewing Like a Champion
maltzj
520
39k
Transcript
OPEN SOFTWARE FOR ASTROPHYSICS Dan Foreman-Mackey
None
case study: Gaussian Processes
AAS 225 / 2015 / Seattle AAS 231 / 2018
/ National Harbor
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022) ignoring correlated noise accounting for
correlated noise
reference: Aigrain & DFM (2022)
a Gaussian Process is a drop - in replacement for
chi - squared
more details: Aigrain & Foreman-Mackey (2023) arXiv:2209.08940
7 [1] model building [2] computational cost
k(tn , tm ; θ) “kernel” or “covariance”
None
import george import celerite import tinygp
my f i rst try: george 1
import numpy as np def log_likelihood(params, x, diag, r) :
K = build_kernel_matrix(params, x, diag) gof = r.T @ np.linalg.solve(K, r) norm = np.linalg.slogdet(K)[1] return -0.5 * (gof + norm)
import numpy as np def log_likelihood(params, x, diag, r) :
K = build_kernel_matrix(params, x, diag) gof = r.T @ np.linalg.solve(K, r) norm = np.linalg.slogdet(K)[1] return -0.5 * (gof + norm)
k(tn , tm ; θ) “kernel” or “covariance”
from george.kernels import * k1 = 1.5 * ExpSquaredKernel(2.3) k2
= 5.5 * Matern32Kernel(0.1) kernel = 0.5 * (k1 + k2)
from george import GP gp = GP(kernel) gp.compute(x, yerr) gp.log_likelihood(y)
from george import GP gp = GP(kernel) gp.compute(x, yerr) gp.log_likelihood(y)
gp.f i t(y) ???
the astronomical Python ecosystem + MANY MORE!
* API design (library vs scripts) * don’t reinvent the
wheel
None
faster: celerite* 2 * yes, that truly is how you
pronounce it…
import numpy as np def log_likelihood(params, x, diag, r) :
K = build_kernel_matrix(params, x, diag) gof = r.T @ np.linalg.solve(K, r) norm = np.linalg.slogdet(K)[1] return -0.5 * (gof + norm)
import numpy as np def log_likelihood(params, x, diag, r) :
K = build_kernel_matrix(params, x, diag) gof = r.T @ np.linalg.solve(K, r) norm = np.linalg.slogdet(K)[1] return -0.5 * (gof + norm)
None
“semi/quasi - separable” matrices
102 103 104 105 number of data points [N] 10
5 10 4 10 3 10 2 10 1 100 computational cost [seconds] 1 2 4 8 16 32 64 128 256 direct O(N) 100 101 number o reference: DFM, Agol, Ambikasaran, Angus (2017)
102 103 104 105 number of data points [N] 10
4 10 3 10 2 10 1 100 computational cost [seconds] 1 2 4 8 16 32 64 128 256 O(N) 100 101 number o reference: DFM, Agol, Ambikasaran, Angus (2017)
None
+
+ + vs
* interdisciplinary collaboration * importance of implementation
7 [1] 1 (ish) dimensional input [2] specif i c
type of kernel restrictions:
modern infrastructure: tinygp 3
what’s missing from the astronomical Python ecosystem?
7 [1] differentiable programming [2] hardware acceleration
the broader numerical computing Python ecosystem + SO MANY MORE!
jax.readthedocs.io
import numpy as np def linear_least_squares(x, y) : A =
np.vander(x, 2) return np.linalg.lstsq(A, y)[0]
import jax.numpy as jnp def linear_least_squares(x, y) : A =
jnp.vander(x, 2) return jnp.linalg.lstsq(A, y)[0]
import jax.numpy as jnp @jax.jit def linear_least_squares(x, y) : A
= jnp.vander(x, 2) return jnp.linalg.lstsq(A, y)[0]
None
tinygp.readthedocs.io
the broader numerical computing Python ecosystem + SO MANY MORE!
* I <3 JAX * don’t reinvent the wheel
the why & how of open software in astrophysics
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
None
None
None
None
takeaways
open software is foundational to astrophysics research let’s consider &
discuss interface design and user interaction leverage existing infrastructure & learn when to start fresh
get in touch! dfm.io github.com/dfm
None