Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The search for single transits
Search
Dan Foreman-Mackey
May 08, 2015
Science
1
300
The search for single transits
My short talk from the Sagan Fellows Symposium at Caltech
Dan Foreman-Mackey
May 08, 2015
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
120
Open Software for Astrophysics, AAS241
dfm
2
500
My research talk for CCA promotion
dfm
1
760
Astronomical software
dfm
1
700
emcee-odi
dfm
1
630
Exoplanet population inference: a tutorial
dfm
3
430
Data-driven discovery in the astronomical time domain
dfm
6
690
TensorFlow for astronomers
dfm
6
770
How to find a transiting exoplanets
dfm
1
450
Other Decks in Science
See All in Science
拡散モデルの原理紹介
brainpadpr
3
6k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
130
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
170
Coqで選択公理を形式化してみた
soukouki
0
290
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
120
How were Quaternion discovered
kinakomoti321
2
1.2k
白金鉱業Meetup Vol.15 DMLによる条件付処置効果の推定_sotaroIZUMI_20240919
brainpadpr
2
690
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
2k
2024-06-16-pydata_london
sofievl
0
610
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
270
観察研究における因果推論
nearme_tech
PRO
1
160
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
320
Featured
See All Featured
Optimizing for Happiness
mojombo
377
70k
Unsuck your backbone
ammeep
669
57k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Agile that works and the tools we love
rasmusluckow
328
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Mobile First: as difficult as doing things right
swwweet
223
9.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Navigating Team Friction
lara
183
15k
A better future with KSS
kneath
238
17k
A Tale of Four Properties
chriscoyier
158
23k
Transcript
Single the search for Transits Dan Foreman-Mackey NYU→UW // github.com/dfm
// @exoplaneteer // dfm.io
David W. Hogg NYU Bernhard Schölkopf MPI-IS
Population Inference
treatment of false positives, dependent parameters, uncertainties & selection effects
open source tools applicable to all existing & future exoplanet missions occurrence rate period, radius, mass, eccentricity, multiplicity, mutual inclination, etc. Flexible & robust inference of the exoplanet population
1 catalog of planet (candidates) measurement of completeness 2 3
measurement of precision Ingredients of a population inference
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
100 101 102 103 104 105 orbital period [days] 100
101 planet radius [R ] Data from NASA Exoplanet Archive
10 100 f 10 30 100 N detection S/N threshold
# of detectable single transits Extrapolated from Dong & Zhu (2013)
How to find a Transiting Planet the traditional way…
1 de-trending grid search in period, phase, and duration 2
3 vetting of candidates How to find a (periodic) transit signal
False Alarms & False Positives
How to find a Transiting Planet the Planet Hunters way…
None
Can we Teach the Machine to Learn™?
Bernhard Schölkopf MPI-IS Get rid of the pipeline!
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days] Supervised Classification
Supervised Classification
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
light curve sections simulated transits held-out light curve features training
set test set
200 400 600 800 1000 1200 1400 time [KBJD] 0.003
0.002 0.001 0.000 0.001 0.002 0.003 0.004
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days]
scikit-learn.org
Preliminary Results
light curves false positives transit candidate 3,000 273 1
9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152
2 0 2 9776926 time since transit [days] 9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152 2 0 2 9776926 time since transit [days] 10602068 10286702 10518652 9775416 9821962 9847647 10544712 9834736 9763612 9763027 False Positives
3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24
t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 1.2 1.8 2.4 3.0 Rp [RJ ] 0.15 0.30 0.45 0.60 e 3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24 t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 0.15 0.30 0.45 0.60 e 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 0.90 0.92 0.94 0.96 0.98 1.00 1.02
No good model of the non-transits…
Temporary solution: Template likelihoods
1 can discover single transits using supervised classification false positives
are still a problem (but maybe less) 2 3 would like to combine method with realistic noise model Conclusions