Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The search for single transits
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Dan Foreman-Mackey
May 08, 2015
Science
1
310
The search for single transits
My short talk from the Sagan Fellows Symposium at Caltech
Dan Foreman-Mackey
May 08, 2015
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
180
Open Software for Astrophysics, AAS241
dfm
2
570
My research talk for CCA promotion
dfm
1
800
Astronomical software
dfm
1
760
emcee-odi
dfm
1
700
Exoplanet population inference: a tutorial
dfm
3
490
Data-driven discovery in the astronomical time domain
dfm
6
740
TensorFlow for astronomers
dfm
6
850
How to find a transiting exoplanets
dfm
1
490
Other Decks in Science
See All in Science
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
940
データマイニング - コミュニティ発見
trycycle
PRO
0
200
Hakonwa-Quaternion
hiranabe
1
170
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
190
Lean4による汎化誤差評価の形式化
milano0017
1
430
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
140
SpatialRDDパッケージによる空間回帰不連続デザイン
saltcooky12
0
160
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
高校生就活へのDA導入の提案
shunyanoda
1
6.2k
データマイニング - グラフデータと経路
trycycle
PRO
1
280
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
160
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
720
Featured
See All Featured
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
A Tale of Four Properties
chriscoyier
162
24k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
Rails Girls Zürich Keynote
gr2m
96
14k
The agentic SEO stack - context over prompts
schlessera
0
640
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Music & Morning Musume
bryan
47
7.1k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Thoughts on Productivity
jonyablonski
74
5k
Transcript
Single the search for Transits Dan Foreman-Mackey NYU→UW // github.com/dfm
// @exoplaneteer // dfm.io
David W. Hogg NYU Bernhard Schölkopf MPI-IS
Population Inference
treatment of false positives, dependent parameters, uncertainties & selection effects
open source tools applicable to all existing & future exoplanet missions occurrence rate period, radius, mass, eccentricity, multiplicity, mutual inclination, etc. Flexible & robust inference of the exoplanet population
1 catalog of planet (candidates) measurement of completeness 2 3
measurement of precision Ingredients of a population inference
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
100 101 102 103 104 105 orbital period [days] 100
101 planet radius [R ] Data from NASA Exoplanet Archive
10 100 f 10 30 100 N detection S/N threshold
# of detectable single transits Extrapolated from Dong & Zhu (2013)
How to find a Transiting Planet the traditional way…
1 de-trending grid search in period, phase, and duration 2
3 vetting of candidates How to find a (periodic) transit signal
False Alarms & False Positives
How to find a Transiting Planet the Planet Hunters way…
None
Can we Teach the Machine to Learn™?
Bernhard Schölkopf MPI-IS Get rid of the pipeline!
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days] Supervised Classification
Supervised Classification
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
light curve sections simulated transits held-out light curve features training
set test set
200 400 600 800 1000 1200 1400 time [KBJD] 0.003
0.002 0.001 0.000 0.001 0.002 0.003 0.004
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days]
scikit-learn.org
Preliminary Results
light curves false positives transit candidate 3,000 273 1
9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152
2 0 2 9776926 time since transit [days] 9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152 2 0 2 9776926 time since transit [days] 10602068 10286702 10518652 9775416 9821962 9847647 10544712 9834736 9763612 9763027 False Positives
3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24
t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 1.2 1.8 2.4 3.0 Rp [RJ ] 0.15 0.30 0.45 0.60 e 3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24 t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 0.15 0.30 0.45 0.60 e 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 0.90 0.92 0.94 0.96 0.98 1.00 1.02
No good model of the non-transits…
Temporary solution: Template likelihoods
1 can discover single transits using supervised classification false positives
are still a problem (but maybe less) 2 3 would like to combine method with realistic noise model Conclusions