Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The search for single transits
Search
Dan Foreman-Mackey
May 08, 2015
Science
1
300
The search for single transits
My short talk from the Sagan Fellows Symposium at Caltech
Dan Foreman-Mackey
May 08, 2015
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
150
Open Software for Astrophysics, AAS241
dfm
2
540
My research talk for CCA promotion
dfm
1
780
Astronomical software
dfm
1
740
emcee-odi
dfm
1
670
Exoplanet population inference: a tutorial
dfm
3
460
Data-driven discovery in the astronomical time domain
dfm
6
720
TensorFlow for astronomers
dfm
6
820
How to find a transiting exoplanets
dfm
1
470
Other Decks in Science
See All in Science
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
990
データベース03: 関係データモデル
trycycle
PRO
1
260
ttl2html (RDF/Turtle to HTML)
masao
0
110
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.3k
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1k
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
4
630
KH Coderチュートリアル(スライド版)
koichih
1
46k
Hakonwa-Quaternion
hiranabe
1
130
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
120
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
260
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
600
学術講演会中央大学学員会府中支部
tagtag
0
300
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Visualization
eitanlees
148
16k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
A better future with KSS
kneath
239
17k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Code Review Best Practice
trishagee
71
19k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
GitHub's CSS Performance
jonrohan
1032
460k
Transcript
Single the search for Transits Dan Foreman-Mackey NYU→UW // github.com/dfm
// @exoplaneteer // dfm.io
David W. Hogg NYU Bernhard Schölkopf MPI-IS
Population Inference
treatment of false positives, dependent parameters, uncertainties & selection effects
open source tools applicable to all existing & future exoplanet missions occurrence rate period, radius, mass, eccentricity, multiplicity, mutual inclination, etc. Flexible & robust inference of the exoplanet population
1 catalog of planet (candidates) measurement of completeness 2 3
measurement of precision Ingredients of a population inference
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
100 101 102 103 104 105 orbital period [days] 100
101 planet radius [R ] Data from NASA Exoplanet Archive
10 100 f 10 30 100 N detection S/N threshold
# of detectable single transits Extrapolated from Dong & Zhu (2013)
How to find a Transiting Planet the traditional way…
1 de-trending grid search in period, phase, and duration 2
3 vetting of candidates How to find a (periodic) transit signal
False Alarms & False Positives
How to find a Transiting Planet the Planet Hunters way…
None
Can we Teach the Machine to Learn™?
Bernhard Schölkopf MPI-IS Get rid of the pipeline!
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days] Supervised Classification
Supervised Classification
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
light curve sections simulated transits held-out light curve features training
set test set
200 400 600 800 1000 1200 1400 time [KBJD] 0.003
0.002 0.001 0.000 0.001 0.002 0.003 0.004
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days]
scikit-learn.org
Preliminary Results
light curves false positives transit candidate 3,000 273 1
9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152
2 0 2 9776926 time since transit [days] 9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152 2 0 2 9776926 time since transit [days] 10602068 10286702 10518652 9775416 9821962 9847647 10544712 9834736 9763612 9763027 False Positives
3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24
t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 1.2 1.8 2.4 3.0 Rp [RJ ] 0.15 0.30 0.45 0.60 e 3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24 t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 0.15 0.30 0.45 0.60 e 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 0.90 0.92 0.94 0.96 0.98 1.00 1.02
No good model of the non-transits…
Temporary solution: Template likelihoods
1 can discover single transits using supervised classification false positives
are still a problem (but maybe less) 2 3 would like to combine method with realistic noise model Conclusions