Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The search for single transits
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Dan Foreman-Mackey
May 08, 2015
Science
1
310
The search for single transits
My short talk from the Sagan Fellows Symposium at Caltech
Dan Foreman-Mackey
May 08, 2015
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
180
Open Software for Astrophysics, AAS241
dfm
2
570
My research talk for CCA promotion
dfm
1
800
Astronomical software
dfm
1
760
emcee-odi
dfm
1
700
Exoplanet population inference: a tutorial
dfm
3
490
Data-driven discovery in the astronomical time domain
dfm
6
740
TensorFlow for astronomers
dfm
6
850
How to find a transiting exoplanets
dfm
1
490
Other Decks in Science
See All in Science
Vibecoding for Product Managers
ibknadedeji
0
130
My Little Monster
juzishuu
0
550
力学系から見た現代的な機械学習
hanbao
3
3.9k
Celebrate UTIG: Staff and Student Awards 2025
utig
0
710
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
PRO
0
180
Hakonwa-Quaternion
hiranabe
1
170
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.6k
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
450
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
250
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.6k
2025-05-31-pycon_italia
sofievl
0
140
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Why Our Code Smells
bkeepers
PRO
340
58k
Marketing to machines
jonoalderson
1
4.6k
Skip the Path - Find Your Career Trail
mkilby
0
56
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Side Projects
sachag
455
43k
Done Done
chrislema
186
16k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
360
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
How STYLIGHT went responsive
nonsquared
100
6k
A Soul's Torment
seathinner
5
2.3k
Transcript
Single the search for Transits Dan Foreman-Mackey NYU→UW // github.com/dfm
// @exoplaneteer // dfm.io
David W. Hogg NYU Bernhard Schölkopf MPI-IS
Population Inference
treatment of false positives, dependent parameters, uncertainties & selection effects
open source tools applicable to all existing & future exoplanet missions occurrence rate period, radius, mass, eccentricity, multiplicity, mutual inclination, etc. Flexible & robust inference of the exoplanet population
1 catalog of planet (candidates) measurement of completeness 2 3
measurement of precision Ingredients of a population inference
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
100 101 102 103 104 105 orbital period [days] 100
101 planet radius [R ] Data from NASA Exoplanet Archive
10 100 f 10 30 100 N detection S/N threshold
# of detectable single transits Extrapolated from Dong & Zhu (2013)
How to find a Transiting Planet the traditional way…
1 de-trending grid search in period, phase, and duration 2
3 vetting of candidates How to find a (periodic) transit signal
False Alarms & False Positives
How to find a Transiting Planet the Planet Hunters way…
None
Can we Teach the Machine to Learn™?
Bernhard Schölkopf MPI-IS Get rid of the pipeline!
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days] Supervised Classification
Supervised Classification
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
light curve sections simulated transits held-out light curve features training
set test set
200 400 600 800 1000 1200 1400 time [KBJD] 0.003
0.002 0.001 0.000 0.001 0.002 0.003 0.004
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days]
scikit-learn.org
Preliminary Results
light curves false positives transit candidate 3,000 273 1
9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152
2 0 2 9776926 time since transit [days] 9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152 2 0 2 9776926 time since transit [days] 10602068 10286702 10518652 9775416 9821962 9847647 10544712 9834736 9763612 9763027 False Positives
3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24
t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 1.2 1.8 2.4 3.0 Rp [RJ ] 0.15 0.30 0.45 0.60 e 3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24 t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 0.15 0.30 0.45 0.60 e 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 0.90 0.92 0.94 0.96 0.98 1.00 1.02
No good model of the non-transits…
Temporary solution: Template likelihoods
1 can discover single transits using supervised classification false positives
are still a problem (but maybe less) 2 3 would like to combine method with realistic noise model Conclusions