Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The search for single transits
Search
Dan Foreman-Mackey
May 08, 2015
Science
1
300
The search for single transits
My short talk from the Sagan Fellows Symposium at Caltech
Dan Foreman-Mackey
May 08, 2015
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
140
Open Software for Astrophysics, AAS241
dfm
2
540
My research talk for CCA promotion
dfm
1
780
Astronomical software
dfm
1
730
emcee-odi
dfm
1
670
Exoplanet population inference: a tutorial
dfm
3
450
Data-driven discovery in the astronomical time domain
dfm
6
710
TensorFlow for astronomers
dfm
6
810
How to find a transiting exoplanets
dfm
1
470
Other Decks in Science
See All in Science
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
150
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
930
MCMCのR-hatは分散分析である
moricup
0
410
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
540
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
540
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
610
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
4
1.9k
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.4k
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
430
統計学入門講座 第4回スライド
techmathproject
0
160
機械学習 - DBSCAN
trycycle
PRO
0
950
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
940
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
70
11k
Git: the NoSQL Database
bkeepers
PRO
431
65k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
A designer walks into a library…
pauljervisheath
207
24k
It's Worth the Effort
3n
185
28k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Facilitating Awesome Meetings
lara
54
6.5k
The Invisible Side of Design
smashingmag
301
51k
Transcript
Single the search for Transits Dan Foreman-Mackey NYU→UW // github.com/dfm
// @exoplaneteer // dfm.io
David W. Hogg NYU Bernhard Schölkopf MPI-IS
Population Inference
treatment of false positives, dependent parameters, uncertainties & selection effects
open source tools applicable to all existing & future exoplanet missions occurrence rate period, radius, mass, eccentricity, multiplicity, mutual inclination, etc. Flexible & robust inference of the exoplanet population
1 catalog of planet (candidates) measurement of completeness 2 3
measurement of precision Ingredients of a population inference
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
101 102 orbital period [days] 100 101 planet radius [R
] Data from NASA Exoplanet Archive
100 101 102 103 104 105 orbital period [days] 100
101 planet radius [R ] Data from NASA Exoplanet Archive
10 100 f 10 30 100 N detection S/N threshold
# of detectable single transits Extrapolated from Dong & Zhu (2013)
How to find a Transiting Planet the traditional way…
1 de-trending grid search in period, phase, and duration 2
3 vetting of candidates How to find a (periodic) transit signal
False Alarms & False Positives
How to find a Transiting Planet the Planet Hunters way…
None
Can we Teach the Machine to Learn™?
Bernhard Schölkopf MPI-IS Get rid of the pipeline!
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days] Supervised Classification
Supervised Classification
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
Random Forest™ Classification NYC LA 10 8 NYC LA 7
2 NYC LA 3 6 Raining Sunny Car Subway NYC LA 0 6 NYC LA 3 0 NYC LA 0 2 NYC LA 7 0 Beach Park decision tree
light curve sections simulated transits held-out light curve features training
set test set
200 400 600 800 1000 1200 1400 time [KBJD] 0.003
0.002 0.001 0.000 0.001 0.002 0.003 0.004
no_transit transit vs. 1 0 1 time [days] 1 0
1 time [days]
scikit-learn.org
Preliminary Results
light curves false positives transit candidate 3,000 273 1
9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152
2 0 2 9776926 time since transit [days] 9821962 9847647 10544712 9834736 9763612 9763027 2 0 2 10554152 2 0 2 9776926 time since transit [days] 10602068 10286702 10518652 9775416 9821962 9847647 10544712 9834736 9763612 9763027 False Positives
3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24
t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 1.2 1.8 2.4 3.0 Rp [RJ ] 0.15 0.30 0.45 0.60 e 3.0 3.3 3.6 3.9 log10 P/day 0.21 0.22 0.23 0.24 t0 830.8 KBJD [hr] 0.58 0.60 0.62 b 0.15 0.30 0.45 0.60 e 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 838 0.90 0.92 0.94 0.96 0.98 1.00 1.02 824 826 828 830 832 834 836 0.90 0.92 0.94 0.96 0.98 1.00 1.02
No good model of the non-transits…
Temporary solution: Template likelihoods
1 can discover single transits using supervised classification false positives
are still a problem (but maybe less) 2 3 would like to combine method with realistic noise model Conclusions