Upgrade to Pro — share decks privately, control downloads, hide ads and more …

20170216_TechKitchen_FoodImage_Classification

yoppe
February 21, 2017

 20170216_TechKitchen_FoodImage_Classification

yoppe

February 21, 2017
Tweet

More Decks by yoppe

Other Decks in Technology

Transcript

  1. 簡単な問題? 否! • 誤判別を引き起こしやすい画像の存在 → 画像は多様性が大きく判別が難しいものも多い • 適合率と再現率のバランス → サービス上の有用性と危険性を考慮する必要性がある

    • 真のデータ分布にアクセス不可 → 規約上ユーザがアップした画像をチェックすることができない • 対象は動的に変化し続けるもの → ユーザが増えれば画像も増え、その傾向も変わっていくもの
  2. 最初のモデル AlexNet-like model • 迅速なサービスデプロイのために選択 → 研究開発部ができて間もない頃にプロジェクトがスタート • シンプルな料理/非料理判定モデル →

    料理と非料理の2クラス分類として問題を定式化 • 適合率は悪くないが、再現率は良くない → 非料理を料理と判断される方が問題が多いためにこのように調整
  3. モデル改善のアプローチ • より高度なモデルを検証 → CNNの発展をキャッチアップして、その性能を検証 • 多クラス問題への拡張 → 間違えやすいクラスに対する明示的な対処として、クラスを追加 •

    テストデータセットの拡充 → ローカル環境での性能判断を正確にするために、データを拡充 • 他のアプローチの併用 → 性能向上の可能性を追求するために、物体検出などの併用も模索 • ...
  4. 多クラス問題への拡張 food ≠ non-food • どちらも限られたデータから学習したもの → 全集合は扱えないため、非料理は非料理らしさをデータから学習 → 学習した非料理らしさに当てはまらないデータは予測が難しい

    • 判定が微妙なもの適切なクラスに導きたい → 2値判別ではうまくいかなかったものを新しいクラスとして扱う • 間違えやすい赤ちゃんクラスなどを追加 → 試行錯誤の結果として発見した間違えやすいクラスを追加
  5. 多クラス問題への拡張 food ≠ non-food 確率密度 画像の種類 料理 非料理 非料理1 非料理2

    料理 2クラスでは判定が難しい非料理画像を追加クラスでカバー