Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Star Formation Histories of Nearby Galaxies

Dan Weisz
October 02, 2015
81

Star Formation Histories of Nearby Galaxies

Talk at the GMT Conference in Asilomar, CA in Oct 2015

Dan Weisz

October 02, 2015
Tweet

Transcript

  1. Date Star Formation Histories of Nearby Galaxies Univ. of Washington,

    Hubble Fellow UC Berkeley 10.2.2015 #GMT15 @bigticketdw speakerdeck.com/dweisz Dan Weisz
  2. Hotter Brighter Cooler Brighter Hotter Main Sequence (MS) Core Helium

    Burners (25-500 Myr) Asymptotic Giants Red Giants Horizontal Branch MS Turn-Off Lower MS Information is Rich and Redundant Stellar Age Information from CMDs Fainter
  3. From CMDs to SFHs CMDs are the sum of simple

    stellar populations. old Young
  4. Fornax LG dSph Example Star Formation History Ancient Constant Young

    Weisz+ 2014a Random Uncertainties Systematic Uncertainties
  5. Weisz+ 2014a Hidalgo+ 2011 Deep Shallow LGS3 Precision in SFHs:

    primarily affected by CMD depth and stellar physics Deep Shallow Effects of CMD depth on SFHs
  6. MV = -4.9 MV = -16.5 dSph dIrr dTrans dE

    ~104M⊙ ~109M⊙ Weisz+ 2014a
  7. • Mass Assembly and Chemical Enrichment History of Hundreds of

    Nearby Galaxies • Constraining Galaxy Formation Simulations • Interplay Between Baryons and Dark Matter • The Near-Field, Far-Field Connection Science From Ensembles of Resolved Galaxy SFHs
  8. • Mass Assembly and Chemical Enrichment History of Hundreds of

    Nearby Galaxies • Constraining Galaxy Formation Simulations • Interplay Between Baryons and Dark Matter • The Near-Field, Far-Field Connection see also: talk by Mike Boylan-Kolchin, poster by Andrew Graus Science From Ensembles of Resolved Galaxy SFHs
  9. −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV

    Magnitude (1500 Å) 10−7 −1.31 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 Number Density MUV Brighter Fainter Less More Far-Field: Galaxy Ultra-Violet Luminosity Function at z~7 Finkelstein+ 2014
  10. −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV

    Magnitude (1500 Å) 10−7 −1.31 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 MUV Faint end Slope Finkelstein+ 2014 Brighter Fainter Less More Number Density Far-Field: Galaxy Ultra-Violet Luminosity Function at z~7
  11. High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame

    UV Luminosity Function at z = 4–8 17 −21 −20 −19 −18 −17 lute UV Magnitude (1500 Å) z ∼ 4 y +14 urg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −21 −20 −19 −18 ute UV Magnitude (1500 Å) z ∼ 6 y 9 +07 +14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame UV Luminosity Function at z = 4–8 17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 4 This Study Bouwens+14 van der Burg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 6 This Study McLure+09 Willott+13 Bouwens+07 Bouwens+14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 ϕ (# Mag−1 Mpc−3) McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 +2.52 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 ϕ (# M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 −21 −20 −19 −18 te UV Magnitude (1500 Å) z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 ϕ* = 0.72 +2.52 −0.65 x10−4 Finkelstein et al. 2014 me UV Luminosity Function at z = 4–8 17 −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 4 -17 -16 -15 -14 -13 -12 -11 -10 10-1 100 101 102 103 MUV Brighter Fainter Less More Number Density Far-Field: Galaxy Ultra-Violet Luminosity Function at z~7
  12. High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame

    UV Luminosity Function at z = 4–8 17 −21 −20 −19 −18 −17 lute UV Magnitude (1500 Å) z ∼ 4 y +14 urg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −21 −20 −19 −18 ute UV Magnitude (1500 Å) z ∼ 6 y 9 +07 +14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame UV Luminosity Function at z = 4–8 17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 4 This Study Bouwens+14 van der Burg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 6 This Study McLure+09 Willott+13 Bouwens+07 Bouwens+14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 ϕ (# Mag−1 Mpc−3) McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 +2.52 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 ϕ (# M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 −21 −20 −19 −18 te UV Magnitude (1500 Å) z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 ϕ* = 0.72 +2.52 −0.65 x10−4 Finkelstein et al. 2014 me UV Luminosity Function at z = 4–8 17 −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 4 -17 -16 -15 -14 -13 -12 -11 -10 10-1 100 101 102 103 MUV Brighter Fainter Less More Needed to maintain reionization (e.g., Kuhlen+ 2012, Robertson+ 2013, 2015) Number Density Far-Field: Galaxy Ultra-Violet Luminosity Function at z~7
  13. High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame

    UV Luminosity Function at z = 4–8 17 −21 −20 −19 −18 −17 lute UV Magnitude (1500 Å) z ∼ 4 y +14 urg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −21 −20 −19 −18 ute UV Magnitude (1500 Å) z ∼ 6 y 9 +07 +14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame UV Luminosity Function at z = 4–8 17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 4 This Study Bouwens+14 van der Burg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 6 This Study McLure+09 Willott+13 Bouwens+07 Bouwens+14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 ϕ (# Mag−1 Mpc−3) McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 +2.52 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 ϕ (# M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 −21 −20 −19 −18 te UV Magnitude (1500 Å) z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 ϕ* = 0.72 +2.52 −0.65 x10−4 Finkelstein et al. 2014 me UV Luminosity Function at z = 4–8 17 −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 4 -17 -16 -15 -14 -13 -12 -11 -10 10-1 100 101 102 103 MUV Brighter Fainter HUDF Less More Needed to maintain reionization (e.g., Kuhlen+ 2012, Robertson+ 2013, 2015) Number Density Far-Field: Galaxy Ultra-Violet Luminosity Function at z~7
  14. High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame

    UV Luminosity Function at z = 4–8 17 −21 −20 −19 −18 −17 lute UV Magnitude (1500 Å) z ∼ 4 y +14 urg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −21 −20 −19 −18 ute UV Magnitude (1500 Å) z ∼ 6 y 9 +07 +14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame UV Luminosity Function at z = 4–8 17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 4 This Study Bouwens+14 van der Burg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 6 This Study McLure+09 Willott+13 Bouwens+07 Bouwens+14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 ϕ (# Mag−1 Mpc−3) McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 +2.52 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 ϕ (# M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 −21 −20 −19 −18 te UV Magnitude (1500 Å) z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 ϕ* = 0.72 +2.52 −0.65 x10−4 Finkelstein et al. 2014 me UV Luminosity Function at z = 4–8 17 −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 4 -17 -16 -15 -14 -13 -12 -11 -10 10-1 100 101 102 103 MUV Brighter Fainter HUDF HST FF (5x, 10x) Less More Needed to maintain reionization (e.g., Kuhlen+ 2012, Robertson+ 2013, 2015) Number Density Far-Field: Galaxy Ultra-Violet Luminosity Function at z~7
  15. High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame

    UV Luminosity Function at z = 4–8 17 −21 −20 −19 −18 −17 lute UV Magnitude (1500 Å) z ∼ 4 y +14 urg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −21 −20 −19 −18 ute UV Magnitude (1500 Å) z ∼ 6 y 9 +07 +14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) CANDELS: The Rest-Frame UV Luminosity Function at z = 4–8 17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 4 This Study Bouwens+14 van der Burg+10 M* = −20.73+0.09 −0.09 α = −1.56+0.06 −0.05 ϕ* = 14.05 +2.05 −1.85 x10−4 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 6 This Study McLure+09 Willott+13 Bouwens+07 Bouwens+14 M* = −21.13+0.25 −0.31 α = −2.02+0.10 −0.10 ϕ* = 1.86 +0.94 −0.80 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 10−2 z ∼ 8 This Study Bouwens+14 Schmidt+14 Finkelstein et al. 2 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 ϕ (# Mag−1 Mpc−3) McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 +2.52 Finkelstein et al. 2014 High-redshift observations State-of-the-art in deep fields (HST) −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 ϕ (# M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 −21 −20 −19 −18 te UV Magnitude (1500 Å) z ∼ 8 13 4 1 M* = −20.89+0.74 −1.08 α = −2.36+0.54 −0.40 ϕ* = 0.72 +2.52 −0.65 x10−4 Finkelstein et al. 2014 me UV Luminosity Function at z = 4–8 17 −17 −23 −22 −21 −20 −19 −18 −17 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 5 This Study Bouwens+14 van der Burg+10 McLure+09 M* = −20.81+0.13 −0.12 α = −1.67+0.05 −0.06 ϕ* = 8.95 +1.92 −1.31 x10−4 −23 −22 −21 −20 −19 −18 Absolute UV Magnitude (1500 Å) 10−7 10−6 10−5 10−4 10−3 10−2 ϕ (# Mag−1 Mpc−3) z ∼ 7 This Study McLure+13 Schenker+13 Bowler+14 Bouwens+14 Bouwens+11 Tilvi+13 Castellano+10 Ouchi+09 M* = −21.03+0.37 −0.50 α = −2.03+0.21 −0.20 ϕ* = 1.57 +1.49 −0.95 x10−4 z ∼ 8 4 -17 -16 -15 -14 -13 -12 -11 -10 10-1 100 101 102 103 MUV Brighter Fainter HUDF HST FF (5x, 10x) JWST Less More Needed to maintain reionization (e.g., Kuhlen+ 2012, Robertson+ 2013, 2015) Number Density Far-Field: Galaxy Ultra-Violet Luminosity Function at z~7
  16. (1) HST-based LG Dwarf SFHs provide M ★ (z) (2)

    Pop. synthesis code converts M ★ (z) to MUV(z) (3) Test for effects of short duration bursts (4)Completeness Estimate: ELVIS simulation of LG THE VERY FAINT END OF THE UV LUMINOSITY FUNCTION OVER COSMIC TIME: CONSTRAINTS FROM THE LOCAL GROUP FOSSIL RECORD Daniel R. Weisz1,2,4, Benjamin D. Johnson1, and Charlie Conroy1,3 Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; [email protected] 2 Astronomy Department, Box 351580, University of Washington, Seattle, WA 98195-1580, USA 3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Received 2014 August 11; accepted 2014 August 29; published 2014 September 23 ABSTRACT present a new technique to estimate the evolution of the very faint end of the UV luminosity function o z ∼ 5. Measured star formation histories (SFHs) from the fossil record of Local Group (LG) galaxies to reconstruct the LF down to MUV ∼ −5 at z ∼ 5 and MUV ∼ −1.5 at z < 1. Such faint limits are nd the current observational limits and are likely to remain beyond the limits of next-generation facili econstructed LFs, when combined with direct measurements of the LFs at higher luminosity, are well-fit ard Schechter function with no evidence of a break to the faintest limits probed by this technique. The der -end slope, α, steepens from ≈−1.2 at z < 1 to ≈ −1.6 at 4 < z < 5. We test the effects of burstines FHs and find the recovered LFs to be only modestly affected. Incompleteness corrections for the faintest xies and the (unlikely) possibility of significant luminosity-dependent destruction of dwarf galaxies betw redshift and the present epoch are important uncertainties. These and other uncertainties can be mitig more detailed modeling and future observations. The reconstructed faint end LF from the fossil record fore be a powerful and complementary probe of the high-redshift faint galaxies believed to play a key ro eionization of the universe. words: dark ages, reionization, first stars – galaxies: evolution – galaxies: high-redshift – xies: luminosity function, mass function – Local Group ne-only material: color figures
  17. Weisz, Johnson, & Conroy 2014 Reddy & Stidel 2009 Alavi+

    2014 Far-Field + Near-Field: UV Luminosity Function at z~2
  18. Far-Field + Near-Field: Evolution of the UV LF at Select

    Redshifts z=0.75 1.25 2 3 4 5 JWST Weisz, Johnson, & Conroy 2014
  19. Redshift Evolution of Faint End UV Slope Weisz, Johnson, &

    Conroy 2014 Faint End Slope (α) Redshift (z)
  20. Room for Improvement (1) More SFHs from CMDs that reach

    oldest MSTO (2) Improved knowledge of stellar physics (3) Better knowledge of faint galaxy completeness - particularly outside Milky Way satellites
  21. MW: 100% Field: ~50% M31: ~25% Fraction of dwarfs imaged

    below HB Depth of CMDs in Local Group Dwarfs Prior to 2015
  22. HST Cycles 21/22 PI: E. Skillman 6 M31 satellites to

    oMSTO PI: N. Martin 17 M31 satellites to sub-HB PI: D. Weisz PegDIG & WLM to oMSTO Depth of CMDs in Local Group Dwarfs Currently
  23. Deep CMDs of “Field” Dwarfs Stellar Masses ~106 - 108

    M⊙ Distances ~0.4 - 0.9 Mpc HST programs led by Gallart, Cole, Weisz, …
  24. oldest MSTO w/ JWST LG M81 Group Cen A Group

    NGC 253 Group Resolving the Local Volume ELT RGB star spectra
  25. Summary ‣ CMDs information rich: age, chemistry, stellar evolution, …

    ‣ Primary limitations in interpreting CMDs: depth (oldest MSTO) and stellar physics. ‣ Near-Far Field: SFHs of nearby dwarfs may be the best (only?) way to study faint galaxies at high-z. ‣ Nearby galaxy completeness functions: very important to ensemble galaxy studies. ‣ HST: resolved stars in the Local Group. JWST: resolved stars in the Local Volume. speakerdeck.com/dweisz