Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Python DSL
Search
Elasticsearch Inc
March 11, 2015
Technology
2
930
Python DSL
Slides for Honza's talk at Elastic{on}
Elasticsearch Inc
March 11, 2015
Tweet
Share
More Decks by Elasticsearch Inc
See All by Elasticsearch Inc
OSCON: Scaling a distributed engineering team from 50-250
elasticsearch
13
1.5k
Stuff a Search Engine Can Do
elasticsearch
17
1.7k
Using Elastic to monitor anything
elasticsearch
3
1.5k
Log all the things!
elasticsearch
4
1.2k
Why Elastic? @ 50th Vinitaly 2016
elasticsearch
5
1.9k
What's New In Elasticland?
elasticsearch
3
940
Kibana, Timelion, Graph Meetup
elasticsearch
3
790
Elastic for Time Series Data and Predictive Analytics
elasticsearch
4
3.1k
Elastic 2.0
elasticsearch
1
750
Other Decks in Technology
See All in Technology
ビジネス職が分析も担う事業部制組織でのデータ活用の仕組みづくり / Enabling Data Analytics in Business-Led Divisional Organizations
zaimy
1
310
united airlines ™®️ USA Contact Numbers: Complete 2025 Support Guide
flyunitedhelp
1
470
CDK Toolkit Libraryにおけるテストの考え方
smt7174
1
450
モニタリング統一への道のり - 分散モニタリングツール統合のためのオブザーバビリティプロジェクト
niftycorp
PRO
1
360
United™️ Airlines®️ Customer®️ USA Contact Numbers: Complete 2025 Support Guide
flyunitedguide
0
780
shake-upを科学する
rsakata
7
930
[ JAWS-UG千葉支部 x 彩の国埼玉支部 ]ムダ遣い卒業!FinOpsで始めるAWSコスト最適化の第一歩
sh_fk2
2
150
関数型プログラミングで 「脳がバグる」を乗り越える
manabeai
2
220
【あのMCPって、どんな処理してるの?】 AWS CDKでの開発で便利なAWS MCP Servers特集
yoshimi0227
6
730
公開初日に Gemini CLI を試した話や FFmpeg と組み合わせてみた話など / Gemini CLI 初学者勉強会(#AI道場)
you
PRO
0
1k
Amplify Gen2から知るAWS CDK Toolkit Libraryの使い方/How to use the AWS CDK Toolkit Library as known from Amplify Gen2
fossamagna
1
240
American airlines ®️ USA Contact Numbers: Complete 2025 Support Guide
airhelpsupport
0
390
Featured
See All Featured
Embracing the Ebb and Flow
colly
86
4.7k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Facilitating Awesome Meetings
lara
54
6.5k
Documentation Writing (for coders)
carmenintech
72
4.9k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Unsuck your backbone
ammeep
671
58k
Designing for Performance
lara
610
69k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
Code Review Best Practice
trishagee
69
19k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
We Have a Design System, Now What?
morganepeng
53
7.7k
Transcript
Python DSL Honza Král @honzakral
{ } DSL 2
{ } DSL ? Don't you mean ORM? 3
{ } Current State { "query": { "filtered": { "query":
{ "function_score": { "query": { "bool": { "must": [ {"multi_match": { "fields": ["title^10", "body"], "query": "php"}}, {"has_child": { "child_type": "answer", "query": {"match": {"body": "python"}}}} ], "must_not": [ {"multi_match": { "fields": ["title", "body"], "query": "python"}} ] } }, "field_value_factor": {"field": "rating"} } }, "filter": {"range": {"creation_date": {"from": "2010-01-01"}}} }}, 4 "highlight": { "fields": { "title": {"fragment_size" : 50}, "body": {"fragment_size" : 50} } }, "aggs": { "tags": { "terms": {"field": "tags"}, "aggs": { "comment_avg": { "avg": {"field": "comment_count"} } } }, "frequency": { "date_histogram": { "field": "creation_date", "interval": "month" } } } } JSON DSL
{ } Now add a filter to it! 5
{ } Search Object s = Search(doc_type='question') 6
{ } Simple Query s = s.query('multi_match', fields=['title^10', 'body'], query='php')
7
{ } Compound Query s = s.query('has_child', child_type='answer', query=Q('match', body='python'))
8
{ } Q shortcut {"has_child": { "child_type": "answer', "query": {"match":
{"body": "python"}}}} Q({'has_child': { 'child_type': 'answer', 'query': {'match': {'body': 'python'}}}}) Q('has_child', child_type='answer', query=Q('match', body='python')) HasChild(child_type='answer', query=Match(body='python')) 9
{ } Query expressions Q(...) & Q(...) == Bool(must=[Q(...), Q(...)])
Q(...) | Q(...) == Bool(should=[Q(...), Q(...)]) ~Q(...) == Bool(must_not=[Q(..)]) 10
{ } Filter s = s.filter('range', creation_date={'from': date(2010, 1, 1)})
11
{ } Exclude s = s.query(~Q('multi_match', fields=['title^10', 'body'], query='python')) 12
{ } Manual query s.query = Q('function_score', query=s.query, field_value_factor={'field': 'rating'})
13
{ } Aggregations s.aggs.bucket('tags', 'terms', field='tags')\ .metric('comment_avg', 'avg', field='comment_count') s.aggs.bucket('frequency',
'date_histogram', field='creation_date', interval='month') 14
{ } Highlight ... s = s.highlight('title', 'body', fragment_size=50) 15
{ } Migration path s = Search.from_dict(my_glorious_query) s = s.filter('term',
tag='published') my_glorious_query = s.to_dict() 16 query at a time
{ } Response response = s.execute() for hit in response:
print(hit.meta.score, hit.title) for tag in response.aggregations.tags.buckets: print(tag.key, tag.avg_comments.value) 17 No more brackets!
{ } Persistence From Mapping to Model-like DocTypes 18
{ } Mapping DSL m = Mapping('article') m.field('published_from', Date()) m.field('title',
String(fields={'raw': String(index='not_analyzed')})) m.field('comments', Nested()) m['comments'].property('author', String()) m.save('index-name') m.update_from_es('index-name') 19
{ } DocType class Article(DocType): title = String() created_date =
Date() comments = Nested(properties={'author': String()}) class Meta: index = 'blog' def save(self, **kwargs): self.created_date = now() super().save(**kwargs) Article.init() Article.search()... Search(doc_type=Article) 20
{ } Configuration 21
{ } Connections connections.configure( default={'hosts': ['localhost'], 'sniff_on_start': True}, logging={ 'hosts':
['log1:9200', 'log2:9200'], 'timeout': 30, 'sniff_timeout': 120}) Search(using='logging') es = connections.get_connection() es.indices.delete(index='_all') 22
{ } Future 23
{ } More DSLs! Index Analyzers Settings ... 24
{ } FacetedSearch ? class MySiteSearch(FacetedSearch): doc_type = [Article, Comment]
fields = ['title', 'body'] published = DateHistogram( interval='week', field='published_date') category = Term(field='category') 25 Definition ???
{ } FacetedSearch ? s = MySiteSearch('python', category='blog') for hit
in s: print(h.meta.score, h.title) cat_facet = s.facets['category'] for name, count in cat_facet: mask = '%s: %d' if name == cat_facet.selected: mask = '<b>%s: %d</b>' print(mask % (name, count)) 26 Usage ????
{ } Django integration ? Model -> DocType signal handlers
to update management command to sync FacetedSearch -> Form view + template pattern 27
{ } Thank you! @honzakral
{ } This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License. To view a copy of this license, visit: http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to: Creative Commons PO Box 1866 Mountain View, CA 94042 USA CC-BY-ND 4.0 29