$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DRETa: Extracting RDF from Wikitables [POSTER]
Search
Emir Muñoz
October 23, 2013
Research
0
62
DRETa: Extracting RDF from Wikitables [POSTER]
DRETa: Extracting RDF from Wikitables
Posters & Demos @ ISWC 2013
Emir Muñoz
October 23, 2013
Tweet
Share
More Decks by Emir Muñoz
See All by Emir Muñoz
Machine Learning Pipelines in Production - ML Galway Meetup
emunoz
0
73
Academic Writing: Hints and Tools
emunoz
0
150
Mining Cardinalities from Knowledge Bases
emunoz
0
220
Using Drug Similarities for Discovery of Possible Adverse Reactions
emunoz
0
140
A Hybrid Method for Rating Prediction Using Linked Data Features and Text Reviews
emunoz
0
220
On Learnability of Cardinality Constraints from RDF Data
emunoz
0
180
Minute Madness ESWC 2016
emunoz
0
110
Tensor Networks---a brief description
emunoz
0
110
A Linked Data-Based Decision Tree Classifier to Review Movies
emunoz
1
230
Other Decks in Research
See All in Research
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
110
IMC の細かすぎる話 2025
smly
2
770
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
170
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
140
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
290
20250725-bet-ai-day
cipepser
3
540
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
3
680
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
12
6.4k
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.2k
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
200
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
110
Featured
See All Featured
Facilitating Awesome Meetings
lara
57
6.7k
Typedesign – Prime Four
hannesfritz
42
2.9k
GitHub's CSS Performance
jonrohan
1032
470k
Building Adaptive Systems
keathley
44
2.9k
Code Reviewing Like a Champion
maltzj
527
40k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
GraphQLとの向き合い方2022年版
quramy
50
14k
Become a Pro
speakerdeck
PRO
30
5.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
69k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Docker and Python
trallard
46
3.7k
Transcript
Enabling Networked Knowledge ACKNOWLEDGEMENTS: This work was funded in part
by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). DRETA: EXTRACTING RDF FROM WIKITABLES Emir Muñoz, Aidan Hogan, Alessandra Mileo National University of Ireland, Galway MOTIVATION WIKITABLE SURVEY player http://dbpedia.org/resource/David_de_Gea http://dbpedia.org/resource/Rafael_Pereira_da_Silva_(footballer_born_1990) http://dbpedia.org/resource/Patrice_Evra …. http://dbpedia.org/resource/Fabio_Pereira_da_Silva http://dbpedia.org/resource/Tom_Cleverley http://dbpedia.org/resource/Darren_Fletcher PROPOSAL http://dbpedia.org/resource/Manchester_United_F.C. http://dbpedia.org/resource/England http://dbpedia.org/resource/Forward_(association_football) http://dbpedia.org/resource/Wayne_Rooney dbo:birthPlace dbp:currentclub dbp:position http://dbpedia.org/resource/Spain http://dbpedia.org/resource/Goalkeeper_(association_football) http://dbpedia.org/resource/David_de_Gea dbp:position http://dbpedia.org/resource/Brazil http://dbpedia.org/resource/Defender_(association_football) http://dbpedia.org/resource/Fabio_Pereira_da_Silva dbp:position … … (1) dbr:David_de_Gea dbo:birthPlace dbr:Spain . (2) dbr:Fabio_Pereira_de_Silva dbo:birthPlace dbr:Brazil . (3) dbr:Fabio_Pereira_de_Silva dbp:currentclub dbr:Manchester_United_F.C . SUGGESTED TRIPLES: SELECT ?player WHERE { ?player dbp:currentclub dbr:Manchester_United_F.C . } TABLE TAXONOMY: DISTRIBUTIONS: QUERY: RESULTS DEMO … http://emunoz.org/wikitables (1) EXTRACTED 34.9 MILLION UNIQUE & NOVEL TRIPLES FROM 1.14 MILLION WIKITABLES (8 MACHINES: 4GB RAM, 2.2 GHZ SINGLE CORE; 12 DAYS) (2) INITIAL EVALUATION: (MANUAL ANNOTATION; THREE JUDGES; 750 TRIPLES EACH) (3) MACHINE LEARNING CLASSIFIERS: (CONSENSUS GOLD STANDARD; VARIETY OF FEATURES) FROM 1.14 MILLION WIKITABLES: BAGGING DECISION TREES: SUPPORT VECTOR MACHINES: 1.14 MILLION WIKITABLES: 7.9 MILLION TRIPLES @81.5% PREC. 15.3 MILLION TRIPLES @72.4% PREC. … INCOMPLETE RESULTS!