Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DRETa: Extracting RDF from Wikitables [POSTER]
Search
Emir Muñoz
October 23, 2013
Research
0
57
DRETa: Extracting RDF from Wikitables [POSTER]
DRETa: Extracting RDF from Wikitables
Posters & Demos @ ISWC 2013
Emir Muñoz
October 23, 2013
Tweet
Share
More Decks by Emir Muñoz
See All by Emir Muñoz
Machine Learning Pipelines in Production - ML Galway Meetup
emunoz
0
55
Academic Writing: Hints and Tools
emunoz
0
140
Mining Cardinalities from Knowledge Bases
emunoz
0
160
Using Drug Similarities for Discovery of Possible Adverse Reactions
emunoz
0
100
A Hybrid Method for Rating Prediction Using Linked Data Features and Text Reviews
emunoz
0
160
On Learnability of Cardinality Constraints from RDF Data
emunoz
0
120
Minute Madness ESWC 2016
emunoz
0
99
Tensor Networks---a brief description
emunoz
0
68
A Linked Data-Based Decision Tree Classifier to Review Movies
emunoz
1
160
Other Decks in Research
See All in Research
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
220
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
170
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
170
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
260
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
350
秘伝:脆弱性診断をうまく活用してセキュリティを確保するには
okdt
PRO
4
770
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
400
CUNY DHI_Lightning Talks_2024
digitalfellow
0
130
ミニ四駆AI用制御装置の事例紹介
aks3g
0
180
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
200
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
300
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
530
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Typedesign – Prime Four
hannesfritz
40
2.4k
Designing for humans not robots
tammielis
250
25k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.3k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Navigating Team Friction
lara
183
15k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Rails Girls Zürich Keynote
gr2m
94
13k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Transcript
Enabling Networked Knowledge ACKNOWLEDGEMENTS: This work was funded in part
by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). DRETA: EXTRACTING RDF FROM WIKITABLES Emir Muñoz, Aidan Hogan, Alessandra Mileo National University of Ireland, Galway MOTIVATION WIKITABLE SURVEY player http://dbpedia.org/resource/David_de_Gea http://dbpedia.org/resource/Rafael_Pereira_da_Silva_(footballer_born_1990) http://dbpedia.org/resource/Patrice_Evra …. http://dbpedia.org/resource/Fabio_Pereira_da_Silva http://dbpedia.org/resource/Tom_Cleverley http://dbpedia.org/resource/Darren_Fletcher PROPOSAL http://dbpedia.org/resource/Manchester_United_F.C. http://dbpedia.org/resource/England http://dbpedia.org/resource/Forward_(association_football) http://dbpedia.org/resource/Wayne_Rooney dbo:birthPlace dbp:currentclub dbp:position http://dbpedia.org/resource/Spain http://dbpedia.org/resource/Goalkeeper_(association_football) http://dbpedia.org/resource/David_de_Gea dbp:position http://dbpedia.org/resource/Brazil http://dbpedia.org/resource/Defender_(association_football) http://dbpedia.org/resource/Fabio_Pereira_da_Silva dbp:position … … (1) dbr:David_de_Gea dbo:birthPlace dbr:Spain . (2) dbr:Fabio_Pereira_de_Silva dbo:birthPlace dbr:Brazil . (3) dbr:Fabio_Pereira_de_Silva dbp:currentclub dbr:Manchester_United_F.C . SUGGESTED TRIPLES: SELECT ?player WHERE { ?player dbp:currentclub dbr:Manchester_United_F.C . } TABLE TAXONOMY: DISTRIBUTIONS: QUERY: RESULTS DEMO … http://emunoz.org/wikitables (1) EXTRACTED 34.9 MILLION UNIQUE & NOVEL TRIPLES FROM 1.14 MILLION WIKITABLES (8 MACHINES: 4GB RAM, 2.2 GHZ SINGLE CORE; 12 DAYS) (2) INITIAL EVALUATION: (MANUAL ANNOTATION; THREE JUDGES; 750 TRIPLES EACH) (3) MACHINE LEARNING CLASSIFIERS: (CONSENSUS GOLD STANDARD; VARIETY OF FEATURES) FROM 1.14 MILLION WIKITABLES: BAGGING DECISION TREES: SUPPORT VECTOR MACHINES: 1.14 MILLION WIKITABLES: 7.9 MILLION TRIPLES @81.5% PREC. 15.3 MILLION TRIPLES @72.4% PREC. … INCOMPLETE RESULTS!