Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DRETa: Extracting RDF from Wikitables [POSTER]
Search
Emir Muñoz
October 23, 2013
Research
0
57
DRETa: Extracting RDF from Wikitables [POSTER]
DRETa: Extracting RDF from Wikitables
Posters & Demos @ ISWC 2013
Emir Muñoz
October 23, 2013
Tweet
Share
More Decks by Emir Muñoz
See All by Emir Muñoz
Machine Learning Pipelines in Production - ML Galway Meetup
emunoz
0
60
Academic Writing: Hints and Tools
emunoz
0
140
Mining Cardinalities from Knowledge Bases
emunoz
0
170
Using Drug Similarities for Discovery of Possible Adverse Reactions
emunoz
0
110
A Hybrid Method for Rating Prediction Using Linked Data Features and Text Reviews
emunoz
0
180
On Learnability of Cardinality Constraints from RDF Data
emunoz
0
130
Minute Madness ESWC 2016
emunoz
0
100
Tensor Networks---a brief description
emunoz
0
74
A Linked Data-Based Decision Tree Classifier to Review Movies
emunoz
1
170
Other Decks in Research
See All in Research
[輪講] Transformer Layers as Painters
nk35jk
4
640
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
380
ダイナミックプライシング とその実例
skmr2348
3
580
20241226_くまもと公共交通新時代シンポジウム
trafficbrain
0
390
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
480
Bluesky Game Dev
trezy
0
130
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
290
Whoisの闇
hirachan
3
270
サーブレシーブ成功率は勝敗に影響するか?
vball_panda
0
510
CoRL2024サーベイ
rpc
1
1.5k
機械学習でヒトの行動を変える
hiromu1996
1
520
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
570
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
29
4.6k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Fireside Chat
paigeccino
34
3.2k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
Statistics for Hackers
jakevdp
797
220k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Why Our Code Smells
bkeepers
PRO
335
57k
Mobile First: as difficult as doing things right
swwweet
223
9.3k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Transcript
Enabling Networked Knowledge ACKNOWLEDGEMENTS: This work was funded in part
by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). DRETA: EXTRACTING RDF FROM WIKITABLES Emir Muñoz, Aidan Hogan, Alessandra Mileo National University of Ireland, Galway MOTIVATION WIKITABLE SURVEY player http://dbpedia.org/resource/David_de_Gea http://dbpedia.org/resource/Rafael_Pereira_da_Silva_(footballer_born_1990) http://dbpedia.org/resource/Patrice_Evra …. http://dbpedia.org/resource/Fabio_Pereira_da_Silva http://dbpedia.org/resource/Tom_Cleverley http://dbpedia.org/resource/Darren_Fletcher PROPOSAL http://dbpedia.org/resource/Manchester_United_F.C. http://dbpedia.org/resource/England http://dbpedia.org/resource/Forward_(association_football) http://dbpedia.org/resource/Wayne_Rooney dbo:birthPlace dbp:currentclub dbp:position http://dbpedia.org/resource/Spain http://dbpedia.org/resource/Goalkeeper_(association_football) http://dbpedia.org/resource/David_de_Gea dbp:position http://dbpedia.org/resource/Brazil http://dbpedia.org/resource/Defender_(association_football) http://dbpedia.org/resource/Fabio_Pereira_da_Silva dbp:position … … (1) dbr:David_de_Gea dbo:birthPlace dbr:Spain . (2) dbr:Fabio_Pereira_de_Silva dbo:birthPlace dbr:Brazil . (3) dbr:Fabio_Pereira_de_Silva dbp:currentclub dbr:Manchester_United_F.C . SUGGESTED TRIPLES: SELECT ?player WHERE { ?player dbp:currentclub dbr:Manchester_United_F.C . } TABLE TAXONOMY: DISTRIBUTIONS: QUERY: RESULTS DEMO … http://emunoz.org/wikitables (1) EXTRACTED 34.9 MILLION UNIQUE & NOVEL TRIPLES FROM 1.14 MILLION WIKITABLES (8 MACHINES: 4GB RAM, 2.2 GHZ SINGLE CORE; 12 DAYS) (2) INITIAL EVALUATION: (MANUAL ANNOTATION; THREE JUDGES; 750 TRIPLES EACH) (3) MACHINE LEARNING CLASSIFIERS: (CONSENSUS GOLD STANDARD; VARIETY OF FEATURES) FROM 1.14 MILLION WIKITABLES: BAGGING DECISION TREES: SUPPORT VECTOR MACHINES: 1.14 MILLION WIKITABLES: 7.9 MILLION TRIPLES @81.5% PREC. 15.3 MILLION TRIPLES @72.4% PREC. … INCOMPLETE RESULTS!