Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DRETa: Extracting RDF from Wikitables [POSTER]
Search
Emir Muñoz
October 23, 2013
Research
0
59
DRETa: Extracting RDF from Wikitables [POSTER]
DRETa: Extracting RDF from Wikitables
Posters & Demos @ ISWC 2013
Emir Muñoz
October 23, 2013
Tweet
Share
More Decks by Emir Muñoz
See All by Emir Muñoz
Machine Learning Pipelines in Production - ML Galway Meetup
emunoz
0
65
Academic Writing: Hints and Tools
emunoz
0
150
Mining Cardinalities from Knowledge Bases
emunoz
0
210
Using Drug Similarities for Discovery of Possible Adverse Reactions
emunoz
0
130
A Hybrid Method for Rating Prediction Using Linked Data Features and Text Reviews
emunoz
0
210
On Learnability of Cardinality Constraints from RDF Data
emunoz
0
160
Minute Madness ESWC 2016
emunoz
0
100
Tensor Networks---a brief description
emunoz
0
93
A Linked Data-Based Decision Tree Classifier to Review Movies
emunoz
1
220
Other Decks in Research
See All in Research
電力システム最適化入門
mickey_kubo
1
800
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
100
NLP2025参加報告会 LT資料
hargon24
1
340
能動適応的実験計画
masakat0
2
750
経済学と機械学習:因果推論と密度比推定を中心に
masakat0
0
120
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
200
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
1
280
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
390
2025年度 生成AIの使い方/接し方
hkefka385
1
750
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
120
20250502_ABEJA_論文読み会_スライド
flatton
0
190
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
320
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
Become a Pro
speakerdeck
PRO
29
5.5k
Agile that works and the tools we love
rasmusluckow
329
21k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
How to train your dragon (web standard)
notwaldorf
96
6.2k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
It's Worth the Effort
3n
185
28k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Code Review Best Practice
trishagee
69
19k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Transcript
Enabling Networked Knowledge ACKNOWLEDGEMENTS: This work was funded in part
by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). DRETA: EXTRACTING RDF FROM WIKITABLES Emir Muñoz, Aidan Hogan, Alessandra Mileo National University of Ireland, Galway MOTIVATION WIKITABLE SURVEY player http://dbpedia.org/resource/David_de_Gea http://dbpedia.org/resource/Rafael_Pereira_da_Silva_(footballer_born_1990) http://dbpedia.org/resource/Patrice_Evra …. http://dbpedia.org/resource/Fabio_Pereira_da_Silva http://dbpedia.org/resource/Tom_Cleverley http://dbpedia.org/resource/Darren_Fletcher PROPOSAL http://dbpedia.org/resource/Manchester_United_F.C. http://dbpedia.org/resource/England http://dbpedia.org/resource/Forward_(association_football) http://dbpedia.org/resource/Wayne_Rooney dbo:birthPlace dbp:currentclub dbp:position http://dbpedia.org/resource/Spain http://dbpedia.org/resource/Goalkeeper_(association_football) http://dbpedia.org/resource/David_de_Gea dbp:position http://dbpedia.org/resource/Brazil http://dbpedia.org/resource/Defender_(association_football) http://dbpedia.org/resource/Fabio_Pereira_da_Silva dbp:position … … (1) dbr:David_de_Gea dbo:birthPlace dbr:Spain . (2) dbr:Fabio_Pereira_de_Silva dbo:birthPlace dbr:Brazil . (3) dbr:Fabio_Pereira_de_Silva dbp:currentclub dbr:Manchester_United_F.C . SUGGESTED TRIPLES: SELECT ?player WHERE { ?player dbp:currentclub dbr:Manchester_United_F.C . } TABLE TAXONOMY: DISTRIBUTIONS: QUERY: RESULTS DEMO … http://emunoz.org/wikitables (1) EXTRACTED 34.9 MILLION UNIQUE & NOVEL TRIPLES FROM 1.14 MILLION WIKITABLES (8 MACHINES: 4GB RAM, 2.2 GHZ SINGLE CORE; 12 DAYS) (2) INITIAL EVALUATION: (MANUAL ANNOTATION; THREE JUDGES; 750 TRIPLES EACH) (3) MACHINE LEARNING CLASSIFIERS: (CONSENSUS GOLD STANDARD; VARIETY OF FEATURES) FROM 1.14 MILLION WIKITABLES: BAGGING DECISION TREES: SUPPORT VECTOR MACHINES: 1.14 MILLION WIKITABLES: 7.9 MILLION TRIPLES @81.5% PREC. 15.3 MILLION TRIPLES @72.4% PREC. … INCOMPLETE RESULTS!