Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DRETa: Extracting RDF from Wikitables [POSTER]
Search
Emir Muñoz
October 23, 2013
Research
0
59
DRETa: Extracting RDF from Wikitables [POSTER]
DRETa: Extracting RDF from Wikitables
Posters & Demos @ ISWC 2013
Emir Muñoz
October 23, 2013
Tweet
Share
More Decks by Emir Muñoz
See All by Emir Muñoz
Machine Learning Pipelines in Production - ML Galway Meetup
emunoz
0
68
Academic Writing: Hints and Tools
emunoz
0
150
Mining Cardinalities from Knowledge Bases
emunoz
0
210
Using Drug Similarities for Discovery of Possible Adverse Reactions
emunoz
0
130
A Hybrid Method for Rating Prediction Using Linked Data Features and Text Reviews
emunoz
0
210
On Learnability of Cardinality Constraints from RDF Data
emunoz
0
170
Minute Madness ESWC 2016
emunoz
0
100
Tensor Networks---a brief description
emunoz
0
98
A Linked Data-Based Decision Tree Classifier to Review Movies
emunoz
1
220
Other Decks in Research
See All in Research
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.8k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
110
20250624_熊本経済同友会6月例会講演
trafficbrain
1
590
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
270
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
260
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.9k
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
240
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
150
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
210
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
170
Featured
See All Featured
Navigating Team Friction
lara
189
15k
Six Lessons from altMBA
skipperchong
28
4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Building Applications with DynamoDB
mza
96
6.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
A Tale of Four Properties
chriscoyier
160
23k
How to Ace a Technical Interview
jacobian
279
23k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
790
How GitHub (no longer) Works
holman
315
140k
The Invisible Side of Design
smashingmag
301
51k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
830
Transcript
Enabling Networked Knowledge ACKNOWLEDGEMENTS: This work was funded in part
by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). DRETA: EXTRACTING RDF FROM WIKITABLES Emir Muñoz, Aidan Hogan, Alessandra Mileo National University of Ireland, Galway MOTIVATION WIKITABLE SURVEY player http://dbpedia.org/resource/David_de_Gea http://dbpedia.org/resource/Rafael_Pereira_da_Silva_(footballer_born_1990) http://dbpedia.org/resource/Patrice_Evra …. http://dbpedia.org/resource/Fabio_Pereira_da_Silva http://dbpedia.org/resource/Tom_Cleverley http://dbpedia.org/resource/Darren_Fletcher PROPOSAL http://dbpedia.org/resource/Manchester_United_F.C. http://dbpedia.org/resource/England http://dbpedia.org/resource/Forward_(association_football) http://dbpedia.org/resource/Wayne_Rooney dbo:birthPlace dbp:currentclub dbp:position http://dbpedia.org/resource/Spain http://dbpedia.org/resource/Goalkeeper_(association_football) http://dbpedia.org/resource/David_de_Gea dbp:position http://dbpedia.org/resource/Brazil http://dbpedia.org/resource/Defender_(association_football) http://dbpedia.org/resource/Fabio_Pereira_da_Silva dbp:position … … (1) dbr:David_de_Gea dbo:birthPlace dbr:Spain . (2) dbr:Fabio_Pereira_de_Silva dbo:birthPlace dbr:Brazil . (3) dbr:Fabio_Pereira_de_Silva dbp:currentclub dbr:Manchester_United_F.C . SUGGESTED TRIPLES: SELECT ?player WHERE { ?player dbp:currentclub dbr:Manchester_United_F.C . } TABLE TAXONOMY: DISTRIBUTIONS: QUERY: RESULTS DEMO … http://emunoz.org/wikitables (1) EXTRACTED 34.9 MILLION UNIQUE & NOVEL TRIPLES FROM 1.14 MILLION WIKITABLES (8 MACHINES: 4GB RAM, 2.2 GHZ SINGLE CORE; 12 DAYS) (2) INITIAL EVALUATION: (MANUAL ANNOTATION; THREE JUDGES; 750 TRIPLES EACH) (3) MACHINE LEARNING CLASSIFIERS: (CONSENSUS GOLD STANDARD; VARIETY OF FEATURES) FROM 1.14 MILLION WIKITABLES: BAGGING DECISION TREES: SUPPORT VECTOR MACHINES: 1.14 MILLION WIKITABLES: 7.9 MILLION TRIPLES @81.5% PREC. 15.3 MILLION TRIPLES @72.4% PREC. … INCOMPLETE RESULTS!