Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DRETa: Extracting RDF from Wikitables [POSTER]
Search
Emir Muñoz
October 23, 2013
Research
0
57
DRETa: Extracting RDF from Wikitables [POSTER]
DRETa: Extracting RDF from Wikitables
Posters & Demos @ ISWC 2013
Emir Muñoz
October 23, 2013
Tweet
Share
More Decks by Emir Muñoz
See All by Emir Muñoz
Machine Learning Pipelines in Production - ML Galway Meetup
emunoz
0
50
Academic Writing: Hints and Tools
emunoz
0
140
Mining Cardinalities from Knowledge Bases
emunoz
0
140
Using Drug Similarities for Discovery of Possible Adverse Reactions
emunoz
0
88
A Hybrid Method for Rating Prediction Using Linked Data Features and Text Reviews
emunoz
0
150
On Learnability of Cardinality Constraints from RDF Data
emunoz
0
100
Minute Madness ESWC 2016
emunoz
0
93
Tensor Networks---a brief description
emunoz
0
61
A Linked Data-Based Decision Tree Classifier to Review Movies
emunoz
1
140
Other Decks in Research
See All in Research
授業評価アンケートのテキストマイニング
langstat
1
340
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
110
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
0
190
LINEチャットボット「全力肯定彼氏くん(LuC4)」の 1年を振り返る
o_ob
0
1.6k
-SSII技術マップを通して見る過去・現在,そして未来-
hf149
1
600
RCEへの近道
kawakatz
1
780
Isotropy, Clusters, and Classifiers
hpprc
3
550
大規模言語モデルのバイアス
yukinobaba
PRO
4
610
「並列化時代の乱数生成」
abap34
3
710
DiscordにおけるキャラクターIPを活用したUGCコンテンツ生成サービスの ラピッドプロトタイピング ~国際ハッカソンでの事例研究
o_ob
0
220
"多様な推薦"はユーザーの目にどう映るか
kuri8ive
3
380
工学としてのSRE再訪 / Revisiting SRE as Engineering
yuukit
18
10k
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
44
2k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
167
48k
Why Our Code Smells
bkeepers
PRO
334
57k
Scaling GitHub
holman
458
140k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
1
270
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
7.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
403
65k
Adopting Sorbet at Scale
ufuk
73
9k
Being A Developer After 40
akosma
84
590k
Art, The Web, and Tiny UX
lynnandtonic
295
20k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Typedesign – Prime Four
hannesfritz
39
2.3k
Transcript
Enabling Networked Knowledge ACKNOWLEDGEMENTS: This work was funded in part
by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). DRETA: EXTRACTING RDF FROM WIKITABLES Emir Muñoz, Aidan Hogan, Alessandra Mileo National University of Ireland, Galway MOTIVATION WIKITABLE SURVEY player http://dbpedia.org/resource/David_de_Gea http://dbpedia.org/resource/Rafael_Pereira_da_Silva_(footballer_born_1990) http://dbpedia.org/resource/Patrice_Evra …. http://dbpedia.org/resource/Fabio_Pereira_da_Silva http://dbpedia.org/resource/Tom_Cleverley http://dbpedia.org/resource/Darren_Fletcher PROPOSAL http://dbpedia.org/resource/Manchester_United_F.C. http://dbpedia.org/resource/England http://dbpedia.org/resource/Forward_(association_football) http://dbpedia.org/resource/Wayne_Rooney dbo:birthPlace dbp:currentclub dbp:position http://dbpedia.org/resource/Spain http://dbpedia.org/resource/Goalkeeper_(association_football) http://dbpedia.org/resource/David_de_Gea dbp:position http://dbpedia.org/resource/Brazil http://dbpedia.org/resource/Defender_(association_football) http://dbpedia.org/resource/Fabio_Pereira_da_Silva dbp:position … … (1) dbr:David_de_Gea dbo:birthPlace dbr:Spain . (2) dbr:Fabio_Pereira_de_Silva dbo:birthPlace dbr:Brazil . (3) dbr:Fabio_Pereira_de_Silva dbp:currentclub dbr:Manchester_United_F.C . SUGGESTED TRIPLES: SELECT ?player WHERE { ?player dbp:currentclub dbr:Manchester_United_F.C . } TABLE TAXONOMY: DISTRIBUTIONS: QUERY: RESULTS DEMO … http://emunoz.org/wikitables (1) EXTRACTED 34.9 MILLION UNIQUE & NOVEL TRIPLES FROM 1.14 MILLION WIKITABLES (8 MACHINES: 4GB RAM, 2.2 GHZ SINGLE CORE; 12 DAYS) (2) INITIAL EVALUATION: (MANUAL ANNOTATION; THREE JUDGES; 750 TRIPLES EACH) (3) MACHINE LEARNING CLASSIFIERS: (CONSENSUS GOLD STANDARD; VARIETY OF FEATURES) FROM 1.14 MILLION WIKITABLES: BAGGING DECISION TREES: SUPPORT VECTOR MACHINES: 1.14 MILLION WIKITABLES: 7.9 MILLION TRIPLES @81.5% PREC. 15.3 MILLION TRIPLES @72.4% PREC. … INCOMPLETE RESULTS!