Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DRETa: Extracting RDF from Wikitables [POSTER]
Search
Emir Muñoz
October 23, 2013
Research
0
59
DRETa: Extracting RDF from Wikitables [POSTER]
DRETa: Extracting RDF from Wikitables
Posters & Demos @ ISWC 2013
Emir Muñoz
October 23, 2013
Tweet
Share
More Decks by Emir Muñoz
See All by Emir Muñoz
Machine Learning Pipelines in Production - ML Galway Meetup
emunoz
0
68
Academic Writing: Hints and Tools
emunoz
0
150
Mining Cardinalities from Knowledge Bases
emunoz
0
210
Using Drug Similarities for Discovery of Possible Adverse Reactions
emunoz
0
130
A Hybrid Method for Rating Prediction Using Linked Data Features and Text Reviews
emunoz
0
210
On Learnability of Cardinality Constraints from RDF Data
emunoz
0
170
Minute Madness ESWC 2016
emunoz
0
100
Tensor Networks---a brief description
emunoz
0
99
A Linked Data-Based Decision Tree Classifier to Review Movies
emunoz
1
220
Other Decks in Research
See All in Research
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
3.5k
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
1
210
近似動的計画入門
mickey_kubo
4
1k
数理最適化に基づく制御
mickey_kubo
6
730
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
4k
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
480
数理最適化と機械学習の融合
mickey_kubo
16
9.3k
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
260
20250725-bet-ai-day
cipepser
2
420
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
170
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
150
Featured
See All Featured
Designing for Performance
lara
610
69k
Speed Design
sergeychernyshev
32
1.1k
We Have a Design System, Now What?
morganepeng
53
7.8k
Rails Girls Zürich Keynote
gr2m
95
14k
RailsConf 2023
tenderlove
30
1.2k
Balancing Empowerment & Direction
lara
3
620
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
The Invisible Side of Design
smashingmag
301
51k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Transcript
Enabling Networked Knowledge ACKNOWLEDGEMENTS: This work was funded in part
by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). DRETA: EXTRACTING RDF FROM WIKITABLES Emir Muñoz, Aidan Hogan, Alessandra Mileo National University of Ireland, Galway MOTIVATION WIKITABLE SURVEY player http://dbpedia.org/resource/David_de_Gea http://dbpedia.org/resource/Rafael_Pereira_da_Silva_(footballer_born_1990) http://dbpedia.org/resource/Patrice_Evra …. http://dbpedia.org/resource/Fabio_Pereira_da_Silva http://dbpedia.org/resource/Tom_Cleverley http://dbpedia.org/resource/Darren_Fletcher PROPOSAL http://dbpedia.org/resource/Manchester_United_F.C. http://dbpedia.org/resource/England http://dbpedia.org/resource/Forward_(association_football) http://dbpedia.org/resource/Wayne_Rooney dbo:birthPlace dbp:currentclub dbp:position http://dbpedia.org/resource/Spain http://dbpedia.org/resource/Goalkeeper_(association_football) http://dbpedia.org/resource/David_de_Gea dbp:position http://dbpedia.org/resource/Brazil http://dbpedia.org/resource/Defender_(association_football) http://dbpedia.org/resource/Fabio_Pereira_da_Silva dbp:position … … (1) dbr:David_de_Gea dbo:birthPlace dbr:Spain . (2) dbr:Fabio_Pereira_de_Silva dbo:birthPlace dbr:Brazil . (3) dbr:Fabio_Pereira_de_Silva dbp:currentclub dbr:Manchester_United_F.C . SUGGESTED TRIPLES: SELECT ?player WHERE { ?player dbp:currentclub dbr:Manchester_United_F.C . } TABLE TAXONOMY: DISTRIBUTIONS: QUERY: RESULTS DEMO … http://emunoz.org/wikitables (1) EXTRACTED 34.9 MILLION UNIQUE & NOVEL TRIPLES FROM 1.14 MILLION WIKITABLES (8 MACHINES: 4GB RAM, 2.2 GHZ SINGLE CORE; 12 DAYS) (2) INITIAL EVALUATION: (MANUAL ANNOTATION; THREE JUDGES; 750 TRIPLES EACH) (3) MACHINE LEARNING CLASSIFIERS: (CONSENSUS GOLD STANDARD; VARIETY OF FEATURES) FROM 1.14 MILLION WIKITABLES: BAGGING DECISION TREES: SUPPORT VECTOR MACHINES: 1.14 MILLION WIKITABLES: 7.9 MILLION TRIPLES @81.5% PREC. 15.3 MILLION TRIPLES @72.4% PREC. … INCOMPLETE RESULTS!