Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DRETa: Extracting RDF from Wikitables [POSTER]
Search
Emir Muñoz
October 23, 2013
Research
0
59
DRETa: Extracting RDF from Wikitables [POSTER]
DRETa: Extracting RDF from Wikitables
Posters & Demos @ ISWC 2013
Emir Muñoz
October 23, 2013
Tweet
Share
More Decks by Emir Muñoz
See All by Emir Muñoz
Machine Learning Pipelines in Production - ML Galway Meetup
emunoz
0
64
Academic Writing: Hints and Tools
emunoz
0
150
Mining Cardinalities from Knowledge Bases
emunoz
0
200
Using Drug Similarities for Discovery of Possible Adverse Reactions
emunoz
0
130
A Hybrid Method for Rating Prediction Using Linked Data Features and Text Reviews
emunoz
0
200
On Learnability of Cardinality Constraints from RDF Data
emunoz
0
160
Minute Madness ESWC 2016
emunoz
0
100
Tensor Networks---a brief description
emunoz
0
91
A Linked Data-Based Decision Tree Classifier to Review Movies
emunoz
1
210
Other Decks in Research
See All in Research
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
230
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.6k
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
320
Mathematics in the Age of AI and the 4 Generation University
hachama
0
170
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
190
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.2k
データサイエンティストの就労意識~2015→2024 一般(個人)会員アンケートより
datascientistsociety
PRO
0
710
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
210
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
280
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
240
2025年度 生成AIの使い方/接し方
hkefka385
1
710
RapidPen: AIエージェントによるペネトレーションテスト 初期侵入全自動化の研究
laysakura
0
1.6k
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
960
The Cult of Friendly URLs
andyhume
79
6.5k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
A designer walks into a library…
pauljervisheath
207
24k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Scaling GitHub
holman
460
140k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Being A Developer After 40
akosma
90
590k
We Have a Design System, Now What?
morganepeng
53
7.7k
Transcript
Enabling Networked Knowledge ACKNOWLEDGEMENTS: This work was funded in part
by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2). DRETA: EXTRACTING RDF FROM WIKITABLES Emir Muñoz, Aidan Hogan, Alessandra Mileo National University of Ireland, Galway MOTIVATION WIKITABLE SURVEY player http://dbpedia.org/resource/David_de_Gea http://dbpedia.org/resource/Rafael_Pereira_da_Silva_(footballer_born_1990) http://dbpedia.org/resource/Patrice_Evra …. http://dbpedia.org/resource/Fabio_Pereira_da_Silva http://dbpedia.org/resource/Tom_Cleverley http://dbpedia.org/resource/Darren_Fletcher PROPOSAL http://dbpedia.org/resource/Manchester_United_F.C. http://dbpedia.org/resource/England http://dbpedia.org/resource/Forward_(association_football) http://dbpedia.org/resource/Wayne_Rooney dbo:birthPlace dbp:currentclub dbp:position http://dbpedia.org/resource/Spain http://dbpedia.org/resource/Goalkeeper_(association_football) http://dbpedia.org/resource/David_de_Gea dbp:position http://dbpedia.org/resource/Brazil http://dbpedia.org/resource/Defender_(association_football) http://dbpedia.org/resource/Fabio_Pereira_da_Silva dbp:position … … (1) dbr:David_de_Gea dbo:birthPlace dbr:Spain . (2) dbr:Fabio_Pereira_de_Silva dbo:birthPlace dbr:Brazil . (3) dbr:Fabio_Pereira_de_Silva dbp:currentclub dbr:Manchester_United_F.C . SUGGESTED TRIPLES: SELECT ?player WHERE { ?player dbp:currentclub dbr:Manchester_United_F.C . } TABLE TAXONOMY: DISTRIBUTIONS: QUERY: RESULTS DEMO … http://emunoz.org/wikitables (1) EXTRACTED 34.9 MILLION UNIQUE & NOVEL TRIPLES FROM 1.14 MILLION WIKITABLES (8 MACHINES: 4GB RAM, 2.2 GHZ SINGLE CORE; 12 DAYS) (2) INITIAL EVALUATION: (MANUAL ANNOTATION; THREE JUDGES; 750 TRIPLES EACH) (3) MACHINE LEARNING CLASSIFIERS: (CONSENSUS GOLD STANDARD; VARIETY OF FEATURES) FROM 1.14 MILLION WIKITABLES: BAGGING DECISION TREES: SUPPORT VECTOR MACHINES: 1.14 MILLION WIKITABLES: 7.9 MILLION TRIPLES @81.5% PREC. 15.3 MILLION TRIPLES @72.4% PREC. … INCOMPLETE RESULTS!