Upgrade to Pro — share decks privately, control downloads, hide ads and more …

言語処理のための機械学習入門 1.1〜1.4

Avatar for fhiyo fhiyo
February 27, 2020

言語処理のための機械学習入門 1.1〜1.4

社内の勉強会で発表した内容です

Avatar for fhiyo

fhiyo

February 27, 2020
Tweet

More Decks by fhiyo

Other Decks in Technology

Transcript

  1. Content 1.1 ४උͱຊॻʹ͓͚Δ໿ଋࣄ 1.2 ࠷దԽ໰୊ 1.3 ֬཰ 1.4 ࿈ଓ֬཰ม਺ @fhiyo

    ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 2 / 33
  2. 1.1 ४උͱຊॻʹ͓͚Δ໿ଋࣄ ݴޠॲཧʹ͓͚ΔओͳλεΫ ୯ޠ෼ׂʢword segmentationʣViterbi Ͱ࠷໬ύεΛٻΊΔ ඼ࢺλά෇͚ʢpart-of-speech taggingʣHMM Ͱ඼ࢺྻΛਪఆ ߏจղੳ

    (܎Γड͚ղੳɼ۟ߏ଄ղੳ)ʢsyntactic parsingʣPrim ๏ͳ ͲͰ spanning tree Λߏ੒ or shift-reduce จॻ෼ྨʢtext classificationʣLR, SVM ͳͲɽϞσϧͷબ୒ࢶଟ͍ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 3 / 33
  3. 1.1 ४උͱຊॻʹ͓͚Δ໿ଋࣄ ༻ޠɾه๏ ࣄྫʢinstanceʣ: λεΫͷॲཧ୯Ґʢྫ: จॻ෼ྨͷࣄྫˠจॻʣ ίʔύεʢcorpusʣ: ݴޠͷ͞·͟·ͳܗͷ༻ྫͷू·Γ x(1) :

    σʔλͱͯ͠༩͑ΒΕͨࣄྫ n(w, d), nw,d : จॻ d ʹ͓͚Δ୯ޠ w ͷग़ݱճ਺ n(w, s), nw,s : จ s ʹ͓͚Δ୯ޠ w ͷग़ݱճ਺ n(w, c), nw,c : Ϋϥε c ʹଐ͢Δจॻ܈ʹ͓͚Δ୯ޠ w ͷग़ݱճ਺ N(w, c), Nw,c : Ϋϥε c ʹଐ͢Δจॻͷ͏ͪ w ͕ग़ݱ͢ΔΑ͏ͳจ ॻͷ਺ δ(w, d), δw,d : จॻ d ʹ͓͍ͯ୯ޠ w ͕ग़ݱͨ͠ͱ͖ 1, ग़ݱ͠ͳ ͔ͬͨͱ͖ 0 @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 4 / 33
  4. 1.2 ࠷దԽ໰୊ ࠷దԽ໰୊ʢoptimization problemʣ ͋Δ੍໿ͷ΋ͱͰؔ਺Λ࠷దԽ͢Δม਺஋ͱɼͦͷͱ͖ͷؔ਺஋ΛٻΊ Δ໰୊ɽ Ұൠܗ max. f (x)

    s.t. g(x) ≥ 0 h(x) = 0 f (x): ໨తؔ਺ g(x) >= 0: ෆ౳੍ࣜ໿ h(x) = 0: ౳੍ࣜ໿ ੍໿Λຬͨ͢ղ: ࣮ߦՄೳղ ʢfeasible solutionʣ ࣮ߦՄೳղͷू߹: ࣮ߦՄೳ ྖҬʢfeasible regionʣ ຊॻͰ͸ɼತ࠷దԽʹ͍ͭͯड़΂ ͍ͯΔɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 5 / 33
  5. 1.2 ࠷దԽ໰୊ ྫ୊ 1.1 ྫ୊ 1.1 ͭ͗ͷ࠷େԽ໰୊Λղ͚ʢa ͸ఆ਺ʣ ɽ max.

    − x1x2 s.t. x1 − x2 − a = 0 @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 6 / 33
  6. 1.2 ࠷దԽ໰୊ ྫ୊ 1.1 ྫ୊ 1.1 ͭ͗ͷ࠷େԽ໰୊Λղ͚ʢa ͸ఆ਺ʣ ɽ max.

    − x1x2 s.t. x1 − x2 − a = 0 ੍໿͔Β x2 = x1 − a ͱ͓͍ͯ໨ తؔ਺ʹ୅ೖ͠ɼx1 Ͱภඍ෼ͯ͠ 0 ͱ͓͚͹౴͕͑ग़Δɽ ౴͑: (x1, x2) = (a/2, −a/2) ͜ͷΑ͏ͳ x1=?? ͷܗͷղͷද ͠ํΛดܗࣜʢclosed formʣͱ͍ ͏ɽ??͸Ճݮ৐আ΍ॳ౳ؔ਺ͷ߹ ੒ؔ਺Ͱද͞ΕΔ ดܗࣜͷղ͕ಘΒΕΔ໰୊Λɼղ ੳతʹղ͚Δʢanalyticall solvableʣ໰୊ͱ͍͏ɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 7 / 33
  7. 1.2.1 ತू߹ͱತؔ਺ ತू߹ ू߹ A ⊆ Rd ͕ತू߹ʢconvex setʣ Ͱ͋Δͱ͸ɼ೚ҙͷ

    x(1) ∈ A ͱ x(2) ∈ A ͕͋ͬͨͱ͖ɼ೚ҙͷ t ∈ [0, 1] ʹରͯ͠ tx(1) + (1 − t)x(2) ∈ A ͕੒Γཱͭ͜ͱͰ͋Δɽ ௚ײతʹ͍͑͹ɼtx(1) + (1 − t)x(2) ͸ x(1) ͱ x(2) Λ݁Ϳઢ෼Λද͢ͷͰɼ ͦͷઢ෼͕ू߹͔Β͸Έग़Δ͜ͱ͕ͳ͍ɼͱ͍͏ঢ়ଶɽͭ·Γɼू߹ʹ ʮ΁͜Έʯ͕ͳ͍ɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 8 / 33
  8. 1.2.1 ತू߹ͱತؔ਺ ྫ୊ 1.2 ͋Δ༩͑ΒΕͨฏ໘্ʹ͋Δͱ͍͏੍໿Λຬͨ͢ϕΫτϧͷू߹ A = {x|mx + b

    = 0, x ∈ Rd } ͸ತू߹Ͱ͋Δ͜ͱΛࣔͤɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 9 / 33
  9. 1.2.1 ತू߹ͱತؔ਺ ྫ୊ 1.2 ͋Δ༩͑ΒΕͨฏ໘্ʹ͋Δͱ͍͏੍໿Λຬͨ͢ϕΫτϧͷू߹ A = {x|mx + b

    = 0, x ∈ Rd } ͸ತू߹Ͱ͋Δ͜ͱΛࣔͤɽ A ͷཁૉ x(1), x(2) Λߟ͑Δɽ೚ҙͷ࣮਺ t ∈ [0, 1] ʹରͯ͠ x = tx(1) + (1 − t)x(2) ͱ͢Δͱɼ mx + b = m(tx(1) + (1 − t)x(2)) + b = t(mx(1) + b) + (1 − t)(mx(2) + b) = 0 Αͬͯತू߹Ͱ͋Δɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 10 / 33
  10. 1.2.1 ತू߹ͱತؔ਺ ষ຤໰୊ [3] ྖҬ A ͱ B ͷؒͷۭؒ͸ A

    ∪ B Ͱͳ͍ྖҬɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 11 / 33
  11. 1.2.1 ತू߹ͱತؔ਺ ತؔ਺ ؔ਺ f (x) ্͕ʹತͰ͋Δͱ͸ɼ೚ҙͷ x(1), x(2) ∈

    Rd ɼ೚ҙͷ t ∈ [0, 1] ʹର͠ɼf (tx(1) + (1 − t)x(2)) ≥ tf (x(1)) + (1 − t)f (x(2)) ͕੒ཱ͢Δ͜ͱ Ͱ͋Δɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 12 / 33
  12. 1.2.1 ತू߹ͱತؔ਺ ྫ୊ 1.4 (i)’ ্ʹತͳؔ਺ f1(x), · · ·

    , fn(x) ͷ࿨͸্ʹತͳؔ਺Ͱ͋Δ͜ͱΛࣔͤɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 13 / 33
  13. 1.2.1 ತू߹ͱತؔ਺ ྫ୊ 1.4 (i)’ ্ʹತͳؔ਺ f1(x), · · ·

    , fn(x) ͷ࿨͸্ʹತͳؔ਺Ͱ͋Δ͜ͱΛࣔͤɽ h(x) = ∑ n i=1 fi (x) ͱ͓͘ɽ h(t(x(1)) + (1 − t)(x(2))) = n ∑ i=1 fi (t(x(1)) + (1 − t)(x(2))) ≥ n ∑ i=1 tfi (x(1)) + (1 − t)fi (x(2)) = t( n ∑ i=1 fi )(x(1)) + (1 − t)( n ∑ i=1 fi )(x(2)) = th(x(1)) + (1 − t)h(x(2)) @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 14 / 33
  14. 1.2.1 ತू߹ͱತؔ਺ ತؔ਺Ͱ͋ΔͨΊͷ 1 ࣍ͷ৚݅ ؔ਺ f ্͕ʹತͰ͋Δͱ͖ɼ೚ҙͷ x(1) ∈

    R, x(2) ∈ R ʹ͍ͭͯɼ f (x(2)) − f (x(1)) ≤ ∂f (x(1)) ∂x (x(2) − x(1)) ͕੒Γཱͭɽ ತؔ਺Ͱ͋ΔͨΊͷ 2 ࣍ͷ৚݅ 1 ม਺ؔ਺ f (x) ্͕ʹತͰ 2 ֊ඍ෼Մೳͳͱ͖ɼ2 ֊ඍ෼ f ′′(x) ͸ͭͶʹ ෛ·ͨ͸ 0 ͕੒Γཱͭɽ ತؔ਺Ͱ͋ΔͨΊͷ 2 ࣍ͷ৚݅ʢଟม਺ؔ਺൛ʣ ଟม਺ؔ਺ f (x) ্͕ʹತͰ 2 ֊ඍ෼ՄೳͰ͋Δͱ͖ɼϔοηߦྻ Hf (x) ͸൒ෛఆ஋Ͱ͋Δɽ ϔοηߦྻ H ͕൒ෛఆ஋ ⇐⇒ ೚ҙͷ n ࣍ݩϕΫτϧ x ʹ͍ͭͯ xTHx ≤ 0 ͕੒Γཱͭ ⇐⇒ ϔοηߦྻͷݻ༗஋͕͢΂ͯෛ·ͨ͸ 0 @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 15 / 33
  15. 1.2.2 ತܭը໰୊ ತܭը໰୊ ͋Δ࠷దԽ໰୊͕ತܭը໰୊Ͱ͋Δͱ͸ɼͦͷ໨తؔ਺͕ತؔ਺Ͱ͋ͬ ͯɼ͔࣮ͭߦՄೳྖҬ͕ತू߹Ͱ͋Δ͜ͱΛ͍͏ɽ ྫ. ͭ͗ͷತܭը໰୊Λղ͚ɽ max. − x2

    1 − x2 2 s.t. x1 − x2 − a = 0 ತܭը໰୊ͷղ͕ɼ໨తม਺Λඍ෼ͯ͠ 0 ʹͳΔ఺ͱͯ͠ٻΊΒΕΔ৔ ߹͸ͦΕͰ OKɽ ٻΊΒΕͳ͍৔߹ͷྫ: f (x) = 1 2 x2 + exp(x) ˠॳظ஋͔Βগͣͭ͠஋Λߋ৽͢Δ਺஋ղ๏ʢnumerical methodʣ ʹΑΓ ۙࣅղΛٻΊΔɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 16 / 33
  16. 1.2.2 ತܭը໰୊ ਺஋ղ๏ͷղ͖ํͷྫ: 1. ࠷ٸ߱Լ๏ʢgradient descent methodʣ xnew = xold

    − ϵ∇x f (xold) 2. χϡʔτϯ๏ʢNewton’s methodʣ xnew = xold − H−1 xold ∇x f (xold) @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 17 / 33
  17. 1.2.3 ౳੍ࣜ໿෇ತܭը໰୊ max. f (x) s.t. g(x) = 0 Ұൠʹ

    g(x) = 0 Λຬͨ͢ղ͕ภඍ෼ͯ͠ 0 ͱͳΔͱ͸ݶΒͳ͍ͷͰɼࠓ ·Ͱͷख๏͸࢖͑ͳ͍ ˠϥάϥϯδϡؔ਺ʢLagrangianʣ L(x, λ) Λಋೖ͢Δ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 18 / 33
  18. ϥάϥϯδϡͷະఆ৐਺๏ʢLagrange Multipliersʣ ϥάϥϯδϡͷະఆ৐਺๏ʹΑΔղ͖ํ: L(x, λ) = f (x) + λg(x)

    Ͱ͋Δϥάϥϯδϡؔ਺ L Λಋೖ͢Δɽ ͜ͷͱ͖ɼ      ∂L ∂x = 0 (1) ∂L ∂λ = 0 (2) ͱ͍͏࿈ཱํఔࣜΛղ͘͜ͱʹΑΓɼ࠷దͳղ͕ಘΒΕΔɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 19 / 33
  19. ϥάϥϯδϡͷະఆ৐਺๏ʢLagrange Multipliersʣ 1 1Pattern Recognition and Machine Learning, Christopher M.

    Bishop, Springer, p.708 @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 20 / 33
  20. 1.2.4 ෆ౳੍ࣜ໿෇ತܭը໰୊ max. f (x) s.t. g(x) ≥ 0 Ҍ఺

    L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) ͕ղΛຬͨ͢఺ͱͳΔ͕ɺͦͷূ໌ ͕Ͱ͖ͳ͔ͬͨɽ ɽҎԼʹ໰୊Λղ͘खॱ͚ͩॻ͖·͢ɽ 1 L(x, λ) = f (x) + λg(x) (λ ≥ 0) Ͱ͋Δϥάϥϯδϡؔ਺Λߏ੒͢Δ 2 L(x, λ) Λ࠷େԽ͢Δ x = x∗(λ) ΛٻΊΔ 3 L(x∗(λ), λ) Λ λ ʹ͍ͭͯ࠷খԽ͢Δ (૒ର໰୊Λղ͘͜ͱʹΑΓղΛٻ ΊΔ) 2 2 https://ja.wolframalpha.com/input/?i=%E9%9E%8D%E7%82%B9+x%5E2+-+y%5E2 @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 21 / 33
  21. 1.2.4 ෆ౳੍ࣜ໿෇ತܭը໰୊ ྫ୊ 1.8 ͭ͗ͷ࠷େԽ໰୊Λղ͚ɽ max. − x2 1 −

    x2 2 s.t. x1 + x2 − 1 ≥ 0 1 L(x, λ) = f (x) + λg(x) (λ ≥ 0) Ͱ͋Δϥάϥϯδϡؔ਺Λߏ੒͢Δ L(x1, x2, λ) = −x2 1 − x2 2 + λ(x1 + x2 − 1), λ ≥ 0 2 L(x, λ) Λ࠷େԽ͢Δ x = x∗(λ) ΛٻΊΔ L Λ x1, x2 Ͱඍ෼ͯ͠ 0 ͱ͓͘ɽ x∗ 1 (λ) = x∗ 2 (λ) = λ/2 3 L(x∗(λ), λ) Λ λ ʹ͍ͭͯ࠷খԽ͢Δ (૒ର໰୊Λղ͘͜ͱʹΑΓղ ΛٻΊΔ) L(x1 = λ/2, x2 = λ/2, λ) = 1 2 λ2 − λ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 22 / 33
  22. 1.2.4 ෆ౳੍ࣜ໿෇ತܭը໰୊ ষ຤໰୊ 6 g(x) ≥ 0 ͳΔ੍໿ͷ΋ͱͰ f (x)

    Λ࠷େԽ͢Δ໰୊Λߟ͑Δɽ͜Ε͕ತܭ ը໰୊Ͱ͋Δͱ͖ɼ(x∗, λ∗) ͕ L(x, λ) = f (x) + λg(x) ͷҌ఺ͳΒ͹ɼx∗ ͸࠷దղͰ͋Δ͜ͱΛূ໌ͤΑɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 23 / 33
  23. 1.2.4 ෆ౳੍ࣜ໿෇ತܭը໰୊ ষ຤໰୊ 6 g(x) ≥ 0 ͳΔ੍໿ͷ΋ͱͰ f (x)

    Λ࠷େԽ͢Δ໰୊Λߟ͑Δɽ͜Ε͕ತܭ ը໰୊Ͱ͋Δͱ͖ɼ(x∗, λ∗) ͕ L(x, λ) = f (x) + λg(x) ͷҌ఺ͳΒ͹ɼx∗ ͸࠷దղͰ͋Δ͜ͱΛূ໌ͤΑɽ (x∗, λ∗) ͕Ҍ఺ ⇐⇒ L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) ͕੒ཱ͢Δɽ L(x∗, λ∗) ≤ L(x∗, λ) ΑΓɼλ∗g(x∗) ≤ λg(x∗)ɽ͜Ε͕೚ҙͷ λ ʹ͍ͭͯ੒Γཱ ͭɽg(x∗) = 0 ͷͱ͖͸ λ∗ ͸೚ҙɽg(x∗) > 0 ͷͱ͖ɼλ∗ ≤ λɽλ ≥ 0 ͳͷͰ λ∗ = 0ɽΑͬͯ λ∗g(x∗) = 0 ͱͳΔɽ ͯ͞ɼತܭը໰୊Ͱ͋Δ͜ͱ͔Βɼ L(x, λ∗) ≤ L(x∗, λ∗) + ∇x L(x∗, λ)(x − x∗) = f (x∗) + λ∗g(x∗) + ∇x L(x∗, λ)(x − x∗) = f (x∗) ·ͨɼL(x, λ∗) = f (x) + λ∗g(x) ≥ f (x)ɽΑͬͯ f (x) ≤ L(x, λ∗) ≤ f (x∗) f (x) ≤ f (x∗) ೚ҙͷ x ʹ͍ͭͯ੒ΓཱͭͷͰɼ୊ҙ੒ཱ. (ূ໌ऴ) @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 24 / 33
  24. 1.3 ֬཰ ষ຤໰୊ʲ9ʳ ֬཰ม਺ X1, X2, X3, X4 ͷ೚ҙͷ஋ x1,

    x2, x3, x4 ʹର͠ɼͭ͗ͷ౳͕ࣜ ੒Γཱͭ͜ͱΛࣔͤ ʢP(x2|x3, x4) ̸= 0, P(x3, x4) ̸= 0 ͱ͢Δʣ P(x1|x2, x3, x4) = P(x1, x2|x3, x4) P(x2|x3, x4) @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 26 / 33
  25. 1.3 ֬཰ ষ຤໰୊ʲ9ʳ ֬཰ม਺ X1, X2, X3, X4 ͷ೚ҙͷ஋ x1,

    x2, x3, x4 ʹର͠ɼͭ͗ͷ౳͕ࣜ ੒Γཱͭ͜ͱΛࣔͤ ʢP(x2|x3, x4) ̸= 0, P(x3, x4) ̸= 0 ͱ͢Δʣ P(x1|x2, x3, x4) = P(x1, x2|x3, x4) P(x2|x3, x4) P(x1, x2|x3, x4) = P(x1, x2, x3, x4) P(x3, x4) P(x2|x3, x4) = P(x2, x3, x4) P(x3, x4) P(x1, x2|x3, x4) P(x2|x3, x4) = P(x1, x2, x3, x4) P(x2, x3, x4) = P(x1|x2, x3, x4) @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 27 / 33
  26. 1.3 ֬཰ ྫ୊ 1.14ʢϕΠζͷఆཧʣ x ͸֬཰ม਺ X ͷ೚ҙͷ஋Ͱ͋Γɼy ͸֬཰ม਺ Y

    ͷ೚ҙͷ஋Ͱ͋Δͱ ͢ΔɽP(x) ̸= 0 ͷͱ͖ɼͭ͗ͷ౳͕ࣜ੒ཱ͢Δ͜ͱΛࣔͤɽ P(y|x) = P(y)P(x|y) P(x) P(y|x) = P(y, x) P(x) = P(y)P(x|y) P(x) ϕΠζͷఆཧ͸ҎԼͷΑ͏ʹɼ͋Δ֬཰ม਺ x3 ʹ৚݅෇͚ΒΕͨ৔߹Ͱ΋ಉ༷ ʹ੒Γཱͭɽ P(x2|x1, x3 ) = P(x2|x3 )P(x1|x2, x3 ) P(x1, x3 ) @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 28 / 33
  27. 1.3 ֬཰ पล֬཰ʢmerginal probabilityʣ ಉ࣌෼෍ P(x, y) ͕͋ͬͨͱ͖ɼͨͱ͑͹ͦΕΛ y ʹ͍ͭͯ଍͠߹ΘͤΔ

    ͜ͱͰɼP(x) ͕ಘΒΕΔɽͭ·Γɼ ∑ y P(x, y) = P(x) Ͱ͋Δɽ͜ͷΑ ͏ʹͯ͠ P(x) ΛٻΊͨͱ͖ɼP(x) Λ x ͷपล֬཰ͱ͍͏ɽ ಠཱʢindependentʣ 2 ͭͷ֬཰ม਺ XɼY ʹ͍ͭͯɼP(X = x, Y = y) = P(X = x)P(Y = y) ͕೚ҙͷ x,y ʹ͍ͭͯ੒ཱ͢Δͱ͖ɼX ͱ Y ͸ಠཱͰ͋Δͱ͍͏ɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 29 / 33
  28. 1.3 ֬཰ ৚݅෇͖ಠཱʢconditionally independentʣ 3 ͭͷ֬཰ม਺ X1, X2, X3 ʹ͍ͭͯߟ͑ΔɽX3

    ͷ͋Δ࣮ݱ஋ x3 ʹର͠ɼ X1,X2 ͷ೚ҙͷ࣮ݱ஋ x1,x2 ʹ͍ͭͯ P(X1 = x1, X2 = x2|x3) = P(X1 = x1|x3)P(X2 = x2|x3) ͕੒ཱ͢Δͱ͖ɼX1 ͱ X2 ͸ɼX3 = x3 ͱ͍͏৚݅ͷ΋ͱͰ৚݅෇͖ಠ ཱͰ͋Δͱ͍͏ɽ ·ͨɼಛఆͷ஋ x3 ͚ͩͰͳ͘ɼX3 ͷ೚ҙͷ஋ʹ͍ͭͯ X1,X2 ͕৚݅෇͖ ಠཱͰ͋Δͱ͖ɼX1 ͱ X2 ͸ɼX3 ͕༩͑ΒΕͨ৔߹ʹ৚݅෇͖ಠཱͰ͋ Δͱ͍͏ɽ @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 30 / 33
  29. 1.3 ֬཰ ྫ୊ 3 ͭͷ֬཰ม਺ X1, X2, X3 ʹ͍ͭͯߟ͑ΔɽX1 ͱ

    X2 ͕ X3 ͷ΋ͱͰ৚݅ ෇͖ಠཱ Ͱ͋Δͱ͖ɼҎԼ͕੒Γཱͭ͜ͱΛূ໌ͤΑɽ P(x1|x2, x3) = P(x1|x3) P(x1|x2, x3) = P(x1, x2|x3) P(x1|x3) = P(x1|x3)P(x2|x3) P(x1|x3) = P(x1|x3) @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 31 / 33
  30. 1.3 ֬཰ ϕϧψʔΠ෼෍: ίΠϯ౤͛ͷ 1 ճͷࢼߦͷ֬཰෼෍ ϚϧνψʔΠ෼෍: αΠίϩ౤͛ͷ 1 ճͷࢼߦͷ֬཰෼෍

    ೋ߲෼෍: ίΠϯ౤͛ͷ n ճͷࢼߦͷ֬཰෼෍ ଟ߲෼෍: αΠίϩ౤͛ͷ n ճͷࢼߦͷ֬཰෼෍ ϙΞιϯ෼෍: ද͕ग़Δ֬཰͕ඇৗʹ௿͍ίΠϯΛඇৗʹଟ͘౤͛ ͨͱ͖ͷೋ߲෼෍ ((ίΠϯ౤͛ͷࢼߦճ਺)×(ද͕ग़Δ֬཰) ͕ύϥ ϝʔλ λ ʹͳΔ) @fhiyo ݴޠॲཧͷͨΊͷػցֶशೖ໳ 1.1ʙ1.4 February 27, 2020 32 / 33