$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オプトにおける自然言語生成の応用事例
Search
fhiyo
December 16, 2019
Research
6
740
オプトにおける自然言語生成の応用事例
https://opt.connpass.com/event/156040/
で登壇した内容です
fhiyo
December 16, 2019
Tweet
Share
More Decks by fhiyo
See All by fhiyo
Security_Engineering___Third_Edition_Chapter.20.pdf
fhiyo
0
12
Security_Engineering___Third_Edition_Chapter.21.pdf
fhiyo
0
15
Git再入門
fhiyo
0
130
効果検証入門1章
fhiyo
1
490
言語処理のための機械学習入門 1.1〜1.4
fhiyo
0
91
【論文紹介】Forecasting at Scale
fhiyo
1
680
統計的因果探索に入門してみた
fhiyo
0
510
【論文紹介】Deep Inside Convolutional Networks Visualising Image Classification Models and Saliency Maps -- Simonyan Vedaldi Zisserman 2013 in ArXiv.pdf
fhiyo
0
1.5k
Other Decks in Research
See All in Research
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
100
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
110
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
440
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
480
超高速データサイエンス
matsui_528
1
330
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
140
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
120
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
710
Featured
See All Featured
The Curious Case for Waylosing
cassininazir
0
190
The Invisible Side of Design
smashingmag
302
51k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
0
170
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
50k
Six Lessons from altMBA
skipperchong
29
4.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
30
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
870
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Site-Speed That Sticks
csswizardry
13
1k
Transcript
オプトにおける 自然言語生成の応用事例 株式会社オプト 兵頭 沖 1
はじめに • 発表者 ◦ 兵頭 沖 (Twitter: @fhiyo_) ◦ 略歴
▪ 情報学修士 (アルゴリズム) ▪ 株式会社オプト (2018〜) • データインテリジェンスチーム所属 • 広告文の評価・生成のR&D • 内容 ◦ ニューラルネットワークを用いたテキストクリエイティブ生成のオプト内の応用 事例の紹介 ▪ ※ ルールベースでのアプローチも取り組んでいるが、今回は NNベースの紹介 ▪ ※ 途中経過の報告になります 2
アウトライン • オプトにおける自然言語生成の課題 • 要約タスクとしてみたクリエイティブ生成 • 現時点の出力サンプル • 今後の課題 3
オプトにおける自然言語生成の課題 4 入稿・運用 広告 1.2% B 0.7% C CTR 0.3%
A 制作 実績報告 ?
オプトにおける自然言語生成の課題 テキストクリエイティブ作成の自動支援 • 広告の入れ替え頻度の向上による利益率UP 生成システムに求められる条件 • 文として正しい出力 • 商材情報の反映 (嘘がない、重要な情報の漏れがない)
• ctrなど広告効果が高い • 既存の出力と被らない 5
テキストクリエイティブ作成の自動支援 • 広告の入れ替え頻度の向上による利益率UP 生成システムに求められる条件 • 文として正しい出力 • 商材情報の反映 (嘘がない、重要な情報の漏れがない) •
ctrなど広告効果が高い • 既存の出力と被らない オプトにおける自然言語生成の課題 6 要約タスクで解 いている問題 媒体最適化、取得が難しい情 報に依存した変数 対話文生成などで研究?
テキストクリエイティブ作成の自動支援 • 広告の入れ替え頻度の向上による利益率UP 生成システムに求められる条件 • 文として正しい出力 • 商材情報の反映 (嘘がない、重要な情報の漏れがない) •
ctrなど広告効果が高い • 既存の出力と被らない オプトにおける自然言語生成の課題 7 要約タスクで解 いている問題 媒体最適化、取得が難しい情 報に依存した変数 対話文生成などで研究 まずは上2つにフォーカスする 要約タスクに下2つの問題を解決するような制約式 を取り入れることができれば解けそう?
要約タスクとしてみたクリエイティブ生成 8 入力: 商品ページ 出力: テキスト広告 要約モデル
要約タスクとしてみたクリエイティブ生成 9 入力: 商品ページ 出力: テキスト 広告 要約モデル [問題設定] •
入力文はweb上の商品ページ、出力は テキスト広告 [課題] • データ量が多くない (ドメインごとに区切 ると少ない) • 要約ベンチマーク用タスクに比べて 入力 文の質が悪い • 商材固有の情報を多く含むので OOVの 対処は必須
要約タスクとしてみたクリエイティブ生成 [問題設定] • 入力文はweb上の商品ページ、出力は テキスト広告 [課題] • データ量が多くない (ドメインごとに区切 ると少ない)
• 要約ベンチマーク用タスクに比べて 入力 文の質が悪い • 商材固有の情報を多く含むので OOVの 対処は必須 10 copy mechanismの活用 (ex. copynet, pointer generator) 事前学習済みモデルの活用 (ex. UniLM, BERTSum, MASS)
事前学習済み言語モデルといえば 11 https://arxiv.org/abs/1810.04805 BERT [Devlin+, 2018] 事前訓練済みのモデルを利用して生成タスクを解く手法は最近のhot topic
copynet [Gu+, ACL 2016] 翻訳や要約のタスクは語彙に存在しない単語 (OOV) をどう出力するか?が課題 encoder-decoderで文を生成する際に、sourceの単語をコピーする能力を持たせたモ デル (attentionを用いてどのsourceに注目するか?を決定する)
12 https://www.aclweb.org/anthology/P16-1154/ ※ 厳密にはsub-wordにより OOVの問題は解消されるが、 copy-modeによる部分文字列 の出力を狙う
結果のサンプル 13 エレガンをサポートするブランド。。をおしセット受け入れることを サポートするブランド。。をおしセット受け入れることをサポートす るブランド。。をおしセット受け入れることをサポートするブラン ド。。をお求めの方 biLSTM + attention モデル
生成例 敏感肌」を予防する。健康な肌へ。 biLSTM + copynet 一人ひとりが更にアップブランド。 Transformer 毎日でもうるおいと香りで、清潔感肌へ導くスキン ケアブランド BERT + decoder + copynet
課題: loss・評価方法どうするか 要約タスクとは似て非なるタスク。対話文生成にも (一部) 似てる? 生成システムに求められる条件 (再掲) • 文として正しい出力 •
商材情報の反映 (嘘がない、重要が情報の漏れがない) • ctrなど広告効果が高い • 既存の出力と被らない これらの条件を上手く取り入れられるような評価方法を確立したい 14
その他今後の課題 • 事前学習済みモデルの軽量化 • 実用化の想定使用法の作成・環境作り • データ整備の方法 (入力文をもっとキレイにしたい) • デプロイ環境整備
• etc. 15
おわりに まとめ • オプトにおける自然言語生成の応用事例を紹介した • BERT + copynetで結構キレイに生成ができた? • 出力に多様性を持たせるための機構や評価方法の設計など、やりたいことはたくさ
んある 16