Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オプトにおける自然言語生成の応用事例
Search
fhiyo
December 16, 2019
Research
6
750
オプトにおける自然言語生成の応用事例
https://opt.connpass.com/event/156040/
で登壇した内容です
fhiyo
December 16, 2019
Tweet
Share
More Decks by fhiyo
See All by fhiyo
Security_Engineering___Third_Edition_Chapter.20.pdf
fhiyo
0
20
Security_Engineering___Third_Edition_Chapter.21.pdf
fhiyo
0
25
Git再入門
fhiyo
0
140
効果検証入門1章
fhiyo
1
510
言語処理のための機械学習入門 1.1〜1.4
fhiyo
0
93
【論文紹介】Forecasting at Scale
fhiyo
1
690
統計的因果探索に入門してみた
fhiyo
0
520
【論文紹介】Deep Inside Convolutional Networks Visualising Image Classification Models and Saliency Maps -- Simonyan Vedaldi Zisserman 2013 in ArXiv.pdf
fhiyo
0
1.5k
Other Decks in Research
See All in Research
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
110
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
Ankylosing Spondylitis
ankh2054
0
120
音声感情認識技術の進展と展望
nagase
0
470
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
500
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
420
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
データサイエンティストの業務変化
datascientistsociety
PRO
0
230
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
920
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
72
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
My Coaching Mixtape
mlcsv
0
51
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
57
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
57
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
400
Making Projects Easy
brettharned
120
6.6k
Transcript
オプトにおける 自然言語生成の応用事例 株式会社オプト 兵頭 沖 1
はじめに • 発表者 ◦ 兵頭 沖 (Twitter: @fhiyo_) ◦ 略歴
▪ 情報学修士 (アルゴリズム) ▪ 株式会社オプト (2018〜) • データインテリジェンスチーム所属 • 広告文の評価・生成のR&D • 内容 ◦ ニューラルネットワークを用いたテキストクリエイティブ生成のオプト内の応用 事例の紹介 ▪ ※ ルールベースでのアプローチも取り組んでいるが、今回は NNベースの紹介 ▪ ※ 途中経過の報告になります 2
アウトライン • オプトにおける自然言語生成の課題 • 要約タスクとしてみたクリエイティブ生成 • 現時点の出力サンプル • 今後の課題 3
オプトにおける自然言語生成の課題 4 入稿・運用 広告 1.2% B 0.7% C CTR 0.3%
A 制作 実績報告 ?
オプトにおける自然言語生成の課題 テキストクリエイティブ作成の自動支援 • 広告の入れ替え頻度の向上による利益率UP 生成システムに求められる条件 • 文として正しい出力 • 商材情報の反映 (嘘がない、重要な情報の漏れがない)
• ctrなど広告効果が高い • 既存の出力と被らない 5
テキストクリエイティブ作成の自動支援 • 広告の入れ替え頻度の向上による利益率UP 生成システムに求められる条件 • 文として正しい出力 • 商材情報の反映 (嘘がない、重要な情報の漏れがない) •
ctrなど広告効果が高い • 既存の出力と被らない オプトにおける自然言語生成の課題 6 要約タスクで解 いている問題 媒体最適化、取得が難しい情 報に依存した変数 対話文生成などで研究?
テキストクリエイティブ作成の自動支援 • 広告の入れ替え頻度の向上による利益率UP 生成システムに求められる条件 • 文として正しい出力 • 商材情報の反映 (嘘がない、重要な情報の漏れがない) •
ctrなど広告効果が高い • 既存の出力と被らない オプトにおける自然言語生成の課題 7 要約タスクで解 いている問題 媒体最適化、取得が難しい情 報に依存した変数 対話文生成などで研究 まずは上2つにフォーカスする 要約タスクに下2つの問題を解決するような制約式 を取り入れることができれば解けそう?
要約タスクとしてみたクリエイティブ生成 8 入力: 商品ページ 出力: テキスト広告 要約モデル
要約タスクとしてみたクリエイティブ生成 9 入力: 商品ページ 出力: テキスト 広告 要約モデル [問題設定] •
入力文はweb上の商品ページ、出力は テキスト広告 [課題] • データ量が多くない (ドメインごとに区切 ると少ない) • 要約ベンチマーク用タスクに比べて 入力 文の質が悪い • 商材固有の情報を多く含むので OOVの 対処は必須
要約タスクとしてみたクリエイティブ生成 [問題設定] • 入力文はweb上の商品ページ、出力は テキスト広告 [課題] • データ量が多くない (ドメインごとに区切 ると少ない)
• 要約ベンチマーク用タスクに比べて 入力 文の質が悪い • 商材固有の情報を多く含むので OOVの 対処は必須 10 copy mechanismの活用 (ex. copynet, pointer generator) 事前学習済みモデルの活用 (ex. UniLM, BERTSum, MASS)
事前学習済み言語モデルといえば 11 https://arxiv.org/abs/1810.04805 BERT [Devlin+, 2018] 事前訓練済みのモデルを利用して生成タスクを解く手法は最近のhot topic
copynet [Gu+, ACL 2016] 翻訳や要約のタスクは語彙に存在しない単語 (OOV) をどう出力するか?が課題 encoder-decoderで文を生成する際に、sourceの単語をコピーする能力を持たせたモ デル (attentionを用いてどのsourceに注目するか?を決定する)
12 https://www.aclweb.org/anthology/P16-1154/ ※ 厳密にはsub-wordにより OOVの問題は解消されるが、 copy-modeによる部分文字列 の出力を狙う
結果のサンプル 13 エレガンをサポートするブランド。。をおしセット受け入れることを サポートするブランド。。をおしセット受け入れることをサポートす るブランド。。をおしセット受け入れることをサポートするブラン ド。。をお求めの方 biLSTM + attention モデル
生成例 敏感肌」を予防する。健康な肌へ。 biLSTM + copynet 一人ひとりが更にアップブランド。 Transformer 毎日でもうるおいと香りで、清潔感肌へ導くスキン ケアブランド BERT + decoder + copynet
課題: loss・評価方法どうするか 要約タスクとは似て非なるタスク。対話文生成にも (一部) 似てる? 生成システムに求められる条件 (再掲) • 文として正しい出力 •
商材情報の反映 (嘘がない、重要が情報の漏れがない) • ctrなど広告効果が高い • 既存の出力と被らない これらの条件を上手く取り入れられるような評価方法を確立したい 14
その他今後の課題 • 事前学習済みモデルの軽量化 • 実用化の想定使用法の作成・環境作り • データ整備の方法 (入力文をもっとキレイにしたい) • デプロイ環境整備
• etc. 15
おわりに まとめ • オプトにおける自然言語生成の応用事例を紹介した • BERT + copynetで結構キレイに生成ができた? • 出力に多様性を持たせるための機構や評価方法の設計など、やりたいことはたくさ
んある 16