Introduction MLE Matching Kernels and Designs Examples Summary References
Covariance Kernels that Match the Design
Suppose that the covariance kernel, Cθ
, and the design, txiun
i=1
, have special properties:
C = Cθ(xi
, xj
)
n
i,j=1
= C1
, . . . , Cn
=
1
n
VΛVH, VH = nV´1, Λ = diag(λ1
, . . . , λn
) = diag(λ)
V = V1 ¨ ¨ ¨ Vn = v1 ¨ ¨ ¨ vn
T
, V1
= v1
= 1
c = µ¨(µ¨¨(Cθ(¨, ¨¨))) = 1, c = µ¨(Cθ(¨, x1
)), . . . , µ¨(Cθ(¨, xn
)) T
= 1
Suppose that VTz is a fast transform (O(n log n) cost) applied to z. Let y be the observed function
values. Then it follows that
λ = VTC1
, C´11 =
1
λ1
, ^
y = VTy
θMLE
= argmin
θ
#
n log
n
ÿ
i=2
|
p
yi
|2
λi
+
n
ÿ
i=1
log(λi
)
+
^
µ(f, ε) =
1
n
n
ÿ
i=1
yi
, stopping criterion: 2.58
g
f
f
e 1 ´
n
λ1
1
n2
n
ÿ
i=2
|
p
yi
|2
λi
ď ε
6/11