$30 off During Our Annual Pro Sale. View Details »

Hickernell SIAM UQ 2018 April Talk

Hickernell SIAM UQ 2018 April Talk

Talk given at a SIAM UQ mini-symposium on probabilistic numerics

Fred J. Hickernell

April 17, 2018
Tweet

More Decks by Fred J. Hickernell

Other Decks in Research

Transcript

  1. Adaptive Bayesian Cubature Using Quasi-Monte Carlo Sequences
    Fred J. Hickernell & Jagadees Rathinavel
    Department of Applied Mathematics
    Center for Interdisciplinary Scientific Computation
    Illinois Institute of Technology
    [email protected] mypages.iit.edu/~hickernell
    Thanks to the mini-symposium organizers, the GAIL team
    NSF-DMS-1522687 and NSF-DMS-1638521 (SAMSI)
    SIAM UQ 2018, April 17, 2018

    View Slide

  2. Introduction MLE Matching Kernels and Designs Examples Summary References
    When Do We Stop?
    Compute an integral
    µ(f) =
    ż
    Rd
    f(x) (x) dx Bayesian inference, financial risk, statistical physics, ...
    Desired solution: An adaptive algorithm, ^
    µ(¨, ¨) of the form
    ^
    µ(f, ε) = w0,n
    +
    n
    ÿ
    i=1
    wi,n
    f(xi
    ),
    where n, txiu∞
    i=1
    , w0,n
    , and w = (wi,n
    )n
    i=1
    are chosen to guarantee
    µ(f) ´ ^
    µ(f, ε) ď ε with high probability @ε ą 0, reasonable f
    2/11

    View Slide

  3. Introduction MLE Matching Kernels and Designs Examples Summary References
    The Probabilistic Numerics Approach
    Assume f „ GP(m, s2Cθ), a sample from a Gaussian process. Defining
    c = µ¨(µ¨¨(Cθ(¨, ¨¨))), c = µ¨(Cθ(¨, x1
    )), . . . , µ¨(Cθ(¨, xn
    )) T
    , C = Cθ(xi
    , xj
    ) n
    i,j=1
    and choosing the weights as
    w0
    = m[1 ´ cTC´11], w = C´1c, ^
    µ(f, ε) = w0
    + wTf, f = f(xi
    ) n
    i=1
    .
    yields an unbiased approximation. If y is the observed data, then
    µ(f) ´ ^
    µ(f, ε) ˇ
    ˇ f = y „ N 0, s2(c ´ cTC´1c)
    If n is chosen large enough to make
    2.58sac ´ cTC´1c ď ε,
    then we are assured that
    Pf
    [|µ(f) ´ ^
    µ(f, ε)| ď ε] ě 99%.
    There are issues requiring attention.
    3/11

    View Slide

  4. Introduction MLE Matching Kernels and Designs Examples Summary References
    Maximum Likelihood Estimation
    Minimize minus the log likelihood observed with f = y, first with respect to m, then s, then θ:
    mMLE
    =
    1TC´1y
    1TC´11
    , s2
    MLE
    =
    1
    n
    yT C´1 ´
    C´111TC´1
    1TC´11
    y
    θMLE
    = argmin
    θ
    "
    n log yT C´1 ´
    C´111TC´1
    1TC´11
    y + log(det(C))
    *
    Stopping criterion becomes
    2.58
    g
    f
    f
    f
    f
    e
    c ´ cTC´1c
    n
    looooooomooooooon
    depends on design
    yT C´1 ´
    C´111TC´1
    1TC´11
    y
    looooooooooooooomooooooooooooooon
    depends on data
    ď ε,
    4/11

    View Slide

  5. Introduction MLE Matching Kernels and Designs Examples Summary References
    Low Discrepancy Sampling
    Suppose that the domain is [0, 1]d. Low discrepancy sampling places the xi
    more evenly than IID
    sampling
    IID points Sobol’ points Integration lattice points
    ¨¨¨
    Dick, J. et al. High dimensional integration — the Quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013), H., F. J. et al.
    SAMSI Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applied Mathematics.
    https://www.samsi.info/programs-and-activities/year-long-research-programs/2017-18-program-quasi-
    monte-carlo-high-dimensional-sampling-methods-applied-mathematics-qmc/. 5/11

    View Slide

  6. Introduction MLE Matching Kernels and Designs Examples Summary References
    Covariance Kernels that Match the Design
    Suppose that the covariance kernel, Cθ
    , and the design, txiun
    i=1
    , have special properties:
    C = Cθ(xi
    , xj
    )
    n
    i,j=1
    = C1
    , . . . , Cn
    =
    1
    n
    VΛVH, VH = nV´1, Λ = diag(λ1
    , . . . , λn
    ) = diag(λ)
    V = V1 ¨ ¨ ¨ Vn = v1 ¨ ¨ ¨ vn
    T
    , V1
    = v1
    = 1
    c = µ¨(µ¨¨(Cθ(¨, ¨¨))) = 1, c = µ¨(Cθ(¨, x1
    )), . . . , µ¨(Cθ(¨, xn
    )) T
    = 1
    Suppose that VTz is a fast transform (O(n log n) cost) applied to z. Let y be the observed function
    values. Then it follows that
    λ = VTC1
    , C´11 =
    1
    λ1
    , ^
    y = VTy
    θMLE
    = argmin
    θ
    #
    n log
    n
    ÿ
    i=2
    |
    p
    yi
    |2
    λi
    +
    n
    ÿ
    i=1
    log(λi
    )
    +
    ^
    µ(f, ε) =
    1
    n
    n
    ÿ
    i=1
    yi
    , stopping criterion: 2.58
    g
    f
    f
    e 1 ´
    n
    λ1
    1
    n2
    n
    ÿ
    i=2
    |
    p
    yi
    |2
    λi
    ď ε
    6/11

    View Slide

  7. Introduction MLE Matching Kernels and Designs Examples Summary References
    Form of Matching Covariance Kernels
    Typically the domain of f is [0, 1)d, and
    C(x, t) =
    #
    r
    C(x ´ t mod 1) integration lattices
    r
    C(x ‘ t) Sobol’ sequences, ‘ means digitwise addition modulo 2
    E.g., for integration lattices
    C(x, t) =
    d
    ź
    k=1
    [1 ´ θ1
    (´1)θ2 B2θ2
    (xk ´ tk
    mod 1)], θ1 ą 0, θ2 P N
    7/11

    View Slide

  8. Introduction MLE Matching Kernels and Designs Examples Summary References
    Option Pricing
    µ = fair price =
    ż
    Rd
    e´rT max


    1
    d
    d
    ÿ
    j=1
    Sj ´ K, 0


    e´zTz/2
    (2π)d/2
    dz « $13.12
    Sj
    = S0
    e(r´σ2/2)jT/d+σxj = stock price at time jT/d,
    x = Az, AAT = Σ = min(i, j)T/d
    d
    i,j=1
    , T = 1/4, d = 13 here
    Abs. Error Median Worst 10% Worst 10%
    Tolerance Method Error Accuracy n Time (s)
    1E´2 IID diff 2E´3 100% 6.1E7 33.000
    1E´2 Scr. Sobol’ PCA 1E´3 100% 1.6E4 0.040
    1E´2 Scr. Sob. cont. var. PCA 2E´3 100% 4.1E3 0.019
    1E´2 Bayes. Latt. PCA 2E´3 99% 1.6E4 0.051
    8/11

    View Slide

  9. Introduction MLE Matching Kernels and Designs Examples Summary References
    Gaussian Probability
    µ =
    ż
    [a,b]
    exp ´1
    2
    tTΣ´1t
    a(2π)d det(Σ)
    dt =
    ż
    [0,1]d´1
    f(x) dx
    For some typical choice of a, b, Σ, d = 3; µ « 0.6763
    Rel. Error Median Worst 10% Worst 10%
    Tolerance Method Error Accuracy n Time (s)
    1E´2 IID 5E´4 100% 8.1E4 0.020
    1E´2 Scr. Sobol’ 4E´5 100% 1.0E3 0.005
    1E´2 Bayes. Latt. 5E´5 100% 4.1E3 0.023
    1E´3 IID 9E´5 100% 2.0E6 0.400
    1E´3 Scr. Sobol’ 2E´5 100% 2.0E3 0.006
    1E´3 Bayes. Latt. 3E´7 100% 6.6E4 0.076
    1E´4 Scr. Sobol’ 4E´7 100% 1.6E4 0.018
    1E´4 Bayes. Latt. 6E´9 100% 5.2E5 0.580
    1E´4 Bayes. Latt. Smth. 1E´7 100% 3.3E4 0.047
    9/11

    View Slide

  10. Introduction MLE Matching Kernels and Designs Examples Summary References
    Summary
    Bayesian cubature is successful as an automatic cuabature method
    We can handle relative and hybrid error tolerances?
    Matching the choice of kernels to the low discrepancy sequences makes the computation practical
    Need to explore how rich a family of kernels is needed in practice
    Need to explore when the Gaussian process assumption is reasonable
    For lattices need periodizing variable transformations to get higher order convergence
    For digital nets, higher order nets with the appropriate kernels should give higher order
    convergence
    Are their better alternatives to MLE for estimating parameters?
    10/11

    View Slide

  11. Thank you
    Slides available at
    www.slideshare.net/fjhickernell/hickernell-siam-uq-2018-april-talk

    View Slide

  12. Introduction MLE Matching Kernels and Designs Examples Summary References
    Dick, J., Kuo, F. & Sloan, I. H. High dimensional integration — the Quasi-Monte Carlo way. Acta
    Numer. 22, 133–288 (2013).
    H., F. J., Kuo, F. Y., L’Ecuyer, P. & Owen, A. B. SAMSI Program on Quasi-Monte Carlo and
    High-Dimensional Sampling Methods for Applied Mathematics.
    https://www.samsi.info/programs-and-activities/year-long-research-
    programs/2017-18-program-quasi-monte-carlo-high-dimensional-sampling-methods-
    applied-mathematics-qmc/.
    11/11

    View Slide