Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
はじめてのドラッカー風エクササイズ/first-Drucker-style-exercise
Search
Yuki Fukuma
November 22, 2019
Technology
0
2.7k
はじめてのドラッカー風エクササイズ/first-Drucker-style-exercise
オクト社での社内ランチLTで紹介した登壇資料です。
Yuki Fukuma
November 22, 2019
Tweet
Share
More Decks by Yuki Fukuma
See All by Yuki Fukuma
テーブル定義変更のレビューを効率化するための仕組み作り / DBRE Summit 2023
fkmy
5
1.9k
マイナビ学生の窓口-半内製化の取り組み/Semi-in-house Development Efforts
fkmy
1
930
Other Decks in Technology
See All in Technology
MCPで変わる Amebaデザインシステム「Spindle」の開発
spindle
PRO
3
3.2k
La gouvernance territoriale des données grâce à la plateforme Terreze
bluehats
0
160
エラーとアクセシビリティ
schktjm
1
1.2k
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
160
生成AIでセキュリティ運用を効率化する話
sakaitakeshi
0
640
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
120
AIのグローバルトレンド2025 #scrummikawa / global ai trend
kyonmm
PRO
1
270
「全員プロダクトマネージャー」を実現する、Cursorによる仕様検討の自動運転
applism118
21
10k
なぜテストマネージャの視点が 必要なのか? 〜 一歩先へ進むために 〜
moritamasami
0
220
AWSで始める実践Dagster入門
kitagawaz
1
610
BPaaSにおける人と協働する前提のAIエージェント-AWS登壇資料
kentarofujii
0
130
2025年になってもまだMySQLが好き
yoku0825
8
4.7k
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Typedesign – Prime Four
hannesfritz
42
2.8k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Documentation Writing (for coders)
carmenintech
74
5k
Code Review Best Practice
trishagee
70
19k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
112
20k
Transcript
はじめての ドラッカー⾵エクササイズ Yuki Fukuma @fkm_y #オクト ランチLT 2019.12.10
Yuki Fukuma @fkm_y ೖࣾ αʔόαΠυΤϯδχΞ 3VCZ3VCZPO3BJMT
࠷ۙͷ৬ʹ͍ͭͯ ݒਨͰ͖Δ৬͍͍ͧ
- ドラッカー⾵エクササイズとは - 初ドラッカー⾵エクササイズで感じた疑問 - タックマンモデルについて - 組み合わせて考えてみる 今⽇話すこと
ドラッカー⾵エクササイズとは 書籍「アジャイルサムライ」などで紹介されている チームビルディングの⼿法。 4つの質問の答えをチームで共有することにより 相互理解、期待のすり合わせをする。
ワークショップの準備物(例) • ペンと付箋 • ホワイトボード • タイマー ドラッカー⾵エクササイズとは
ワークショップのスケジュール(例) • 事前説明 :3分 • ⽬的の確認:2分 • 回答の記⼊:10分 • 回答の発表:~5分/1⼈ •
結果の確認:5分 ドラッカー⾵エクササイズとは
ドラッカー⾵エクササイズとは 4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か? • チームメンバーは⾃分にどんな成果を期待してると思うか?
None
ドラッカー⾵エクササイズとは? 4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か? • チームメンバーは⾃分にどんな成果を期待してると思うか?
初ドラッカー⾵エクササイズで感じた疑問 チームメンバーは⾃分にどんな成果を期待してると思うか? ※ほぼ初対⾯の状態で実施した場合 相互理解できていない状態で 期待は答えられないのでは?
None
初ドラッカー⾵エクササイズで感じた疑問 IUUQTCBDLMPHDPNKBCMPHESVDLFSFYFSDJTFNFFUTUVDLNBONPEFM
タックマンモデルについて ϑΣʔζ ֓ཁ ࣮ݱ͍ͨ͠ࣄ ܗظ ɾ͓ޓ͍ͷࣄΛΒͳ͍ ɾڞ௨ͷతΘ͔Βͳ͍ ɾ૬ޓཧղ ࠞཚظ ɾతɺ֤ࣗͷׂɺ
ɹʹ͍ͭͯରཱ͕ੜ·ΕΔ ɾظͷ͢Γ߹Θͤ ౷Ұظ ɾνʔϜͷతۀͷతɺ֤ࣗͷׂ͕ ɹ౷Ұڞ༗͞Ε͍ͯΔঢ়ଶ ػೳظ ɾνʔϜʹ݁ଋྗ࿈ಈੑ͕ੜ·Ε૬ޓʹ ɹαϙʔτ͕ग़དྷΔঢ়ଶ
形成期、混乱期の実現したいことごとに質問を分解してみる 組み合わせて考えてみる 相互理解と期待のすり合わせ 4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か?
• チームメンバーは⾃分にどんな成果を期待してると思うか?
None
何か前提が抜けてるような?
None
相互理解と期待のすり合わせは 何のためにするんだろう?
None
当たり前すぎて忘れがちだけど プロジェクトを進めるため
4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か? • チームメンバーは⾃分にどんな成果を期待してると思うか? 組み合わせて考えてみる
プロジェクトを進めるための 相互理解と期待のすり合わせ
カスタマイズしたドラエク例 1回⽬:形成期 ⽬的:メンバーの相互理解(⾃分を知ってもらう) 質問: ・⾃分は何が得意なのか? ・⾃分が120%頑張っちゃうこと ・チームの中での役割 ・どういうふうに仕事をするのか? ・どういう状態でパフォーマンスを発揮するか? ・ここだけは駄⽬なポイント?
・⾃分が⼤切に思う価値は何か?
カスタマイズしたドラエク例 2回⽬:混乱期 ⽬的:期待のすり合わせ いつ:1回⽬から1~2週間後 質問: ・どういうふうに仕事をするのか? ・⾃分が⼤切に思う価値は何か? ・⾃分はどうやってこのPJに貢献するつもりか? ・このPJでチームメンバーは⾃分にどんな成果を期待してると 思うか?
・このPJで⾃分はチームメンバーにどんな成果を期待するか?
まとめ ・チームビルディング⼿法にドラッカー⾵エクササイズがある ・ドラッカー⾵エクササイズによりメンバーの相互理解、 期待のすり合わせが促進される ・タックマンモデルを元にフェーズの課題に対した カスタマイズ版ドラッカー⾵エクササイズにより より丁寧にチームビルディングできるかもしれない
参考図書 / 参考記事 ࢀߟਤॻ ɾΞδϟΠϧαϜϥΠ ɾΧΠθϯɾδϟʔχʔ ɾίʔνϯάͷجຊ ࢀߟهࣄ ɾνʔϜϝϯόʔͷظΛ͋ΘͤΔʮυϥοΧʔ෩ΤΫααΠζʯ |
DevTab - ͚ͭͮ͠ ΔσϕϩούʔͷͨΊͷใλϒϩΠυ ɾʮυϥοΧʔ෩ΤΫααΠζʯͰظΛ͢Γ͋Θͤͯ҆શͳνʔϜʹ - ϖύϘςοΫϒϩά ɾνʔϜͷظΛ߹ΘͤΔʂυϥοΧʔ෩ΤΫααΠζͱλοΫϚϯϞσϧΛΈ߹Θͤͨ݁ Ռ | Backlogϒϩά