Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
トピックモデルで1週間の献立をレコメンドする
Search
funain
March 02, 2019
Technology
0
5.9k
トピックモデルで1週間の献立をレコメンドする
コード付き解説ドキュメントの記事もアップしておきました。
http://moratoriamuo.hatenablog.com/entry/2019/03/05/004229
funain
March 02, 2019
Tweet
Share
More Decks by funain
See All by funain
第3回 クイズ大会 問題
funain
0
100
第3回 クイズ大会 解答
funain
0
100
第2回 クイズ大会 問題
funain
0
170
第2回 クイズ大会 解答
funain
0
140
2023年度にやりたいこと(めぐろLT会 #2)
funain
0
560
スクリーニング評価の注意点
funain
0
800
第1回 クイズ大会 問題
funain
0
1.6k
第1回 クイズ大会 解答
funain
0
280
フェアな比較を崩すもの ~交絡と効果修飾~ / Confounding EffectModification
funain
1
570
Other Decks in Technology
See All in Technology
AIエージェントで90秒の広告動画を制作!台本・音声・映像・編集をつなぐAWS最新アーキテクチャの実践
nasuvitz
3
440
【NoMapsTECH 2025】AI Edge Computing Workshop
akit37
0
480
CDK CLIで使ってたあの機能、CDK Toolkit Libraryではどうやるの?
smt7174
4
210
組織を巻き込む大規模プラットフォーム移行戦略 〜50+サービスのマルチリージョン・マルチプロダクト化で学んだステークホルダー協働の実践〜 / Platform migration strategy engaging all stakeholders
toshi0607
2
390
疎結合でスキーマ駆動開発を実現するイベントバスの設計
hacomono
PRO
1
180
そろそろ FormatStyle
treastrain
0
260
Wantedlyの開発組織における生成AIの浸透プロジェクトについて
kotominaga
2
170
日本語で指示するだけ!AIで業務効率化を実現する 〜90分で体感する実践ワークショップ〜
taka_aki
0
1.5k
使いやすいプラットフォームの作り方 ー LINEヤフーのKubernetes基盤に学ぶ理論と実践
lycorptech_jp
PRO
2
230
Windows 11 version 25H2 への準備はできていますか?
tamaiyutaro
1
110
「その開発、認知負荷高すぎませんか?」Platform Engineeringで始める開発者体験カイゼン術
sansantech
PRO
2
1.2k
「非更新サブスクリプション」って何者?
haseken_dev
0
130
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Rails Girls Zürich Keynote
gr2m
95
14k
Automating Front-end Workflow
addyosmani
1370
200k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Visualization
eitanlees
148
16k
A designer walks into a library…
pauljervisheath
207
24k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Transcript
トピックモデル ~ 1週間の献立を考える ~ Tokyo.R #76 LT 2019/03/02 1
自己紹介 2 • 名前 : もらとりあむお • Twitter : @moratoriamuo271
• 趣味 : ・飲酒 (ビールと日本酒) ・ 横浜DeNAベイスターズ ・バドミントン, カラオケ, ボードゲーム • 所属 : 4月から渋谷で働きます…
モチベーション 料理において、献立の決定は面倒くさい!! (プログラミングで名前付けが大変なように?) ↓ レコメンドエンジンを作ってしまおう!! • 同じものばかりオススメされても飽きるし、栄養も偏る • レシピをクラスタリングして、クラスタ別でオススメする 3
レコメンドエンジンの作り方 レシピデータの収集 {rvest}と{stringr} ワードクラウドで可視化 {wordcloud} 文書ターム行列の作成 {RMeCab}と{tm} LDAモデルの適用とトピック数の決定 {topicmodels}と{ldatuning} トピックによるレシピの分類とレコメンド
{tidytext}と自作関数 4
レシピデータの収集 5 クックパッドの「今日のご飯・おかず」カテゴリから500件収集
ワードクラウドで可視化 6
トピックモデルの説明 •文書が生成される過程をモデル化した確率モデル トピックごとに単語を生成する確率分布があり、単語の集合 である文書はそれぞれトピック(トピック分布)を持ち、それ らによって文書が生成されていくモデル • ユニグラムモデル → 混合ユニグラムモデル →
LDA と拡張 • 文書だけでなく、画像や購買履歴、ネットワークのデータ にも応用可能。 7
ユニグラムモデル 0 0.1 0.2 0.3 0.4 トピック : R データ
分析 前処理 パイプ 宇宙 8 <文書1> データの分析を する工程の9割 は前処理だ。汚 いデータ… <文書3> データ分析、そ れは宇宙。神。 … <文書2> パイプ演算子は 分析の工程を見 やすくする。パ イプはいいぞ…
混合ユニグラムモデル 0 0.1 0.2 0.3 0.4 0.5 トピック : スポーツ
野球 サッカー 選手 栄養 9 0 0.1 0.2 0.3 0.4 トピック : R データ 分析 前処理 パイプ 宇宙 0 0.1 0.2 0.3 0.4 0.5 トピック : 料理 切る 焼く 弱火 卵 <文書1> データの分析を する工程の9割 は前処理だ。汚 いデータ… <文書2> プロ野球の開幕 に向けて若手選 手がキャンプの … <文書3> ジャガイモを細 かく切って、カ リッとなるよう 焼きます… 0 0.1 0.2 0.3 0.4 0.5 0.6 トピック分布 R スポーツ 料理
LDA(Latent Dirichlet Allocation) 0 0.1 0.2 0.3 0.4 0.5 野球
サッカー 選手 栄養 10 0 0.1 0.2 0.3 0.4 データ 分析 前処理 パイプ 宇宙 0 0.1 0.2 0.3 0.4 0.5 切る 焼く 弱火 卵 <文書1> 過去のデータを 用いて、野球に おけるバントの 効果を分析… <文書2> スポーツ選手が アスリートとし ての身体を維持 するために卵料 理… 0 0.2 0.4 0.6 0.8 文書1のトピック分布 R スポーツ 料理 0 0.2 0.4 0.6 0.8 文書2のトピック分布 R スポーツ 料理
トピック数の決定方法 • パープレキシティ(perplexity)で評価 負の対数尤度から計算される値。testデータを使用。低い方が良いモデル。 • {ldatuning}パッケージを使用 4つの論文で提案された指標でモデルを評価。 • 変分下限でモデル評価 変分ベイズ法を用いて推定をしている場合。
• ディリクレ過程でトピック数もモデル化 階層ディリクレ過程を用いるとトピック数の推定が可能。 11
ldatuningとperplexity 12
分類と解釈をしてみる • Topic 3 グラタン, シチュー, スープ • Topic 8
唐揚げなど鶏肉料理 • Topic 15 サラダ • Topic 18 野菜炒め 13
レコメンドエンジンの完成 14
参考文献 • 岩田『トピックモデル』 • 佐藤『トピックモデルによる統計的潜在意味解析』 • 松浦『StanとRでベイズ統計モデリング』 • 小林『Rによるやさしいテキストマイニング[機械学習編]』 •
『Select number of topics for LDA model』 https://cran.r-project.org/web/packages/ldatuning/vignettes/topics.html • 『蒙古タンメン中本コーパスに対してのLDAの適用とトピック数の探索』 http://kamonohashiperry.com/archives/1619 • 『[R] トピックモデル(LDA)を用いた大量文書の教師なし分類』 https://qiita.com/YM_DSKR/items/017a5dddeb56fcdf1054 15
ENJOY!! 16