Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
トピックモデルで1週間の献立をレコメンドする
Search
funain
March 02, 2019
Technology
0
5.2k
トピックモデルで1週間の献立をレコメンドする
コード付き解説ドキュメントの記事もアップしておきました。
http://moratoriamuo.hatenablog.com/entry/2019/03/05/004229
funain
March 02, 2019
Tweet
Share
More Decks by funain
See All by funain
第3回 クイズ大会 問題
funain
0
78
第3回 クイズ大会 解答
funain
0
74
第2回 クイズ大会 問題
funain
0
130
第2回 クイズ大会 解答
funain
0
120
2023年度にやりたいこと(めぐろLT会 #2)
funain
0
510
スクリーニング評価の注意点
funain
0
720
第1回 クイズ大会 問題
funain
0
970
第1回 クイズ大会 解答
funain
0
240
フェアな比較を崩すもの ~交絡と効果修飾~ / Confounding EffectModification
funain
1
500
Other Decks in Technology
See All in Technology
OCI Success Journey OCIの何が評価されてる?疑問に答える事例セミナー(2025年2月実施)
oracle4engineer
PRO
2
180
実は強い 非ViTな画像認識モデル
tattaka
3
1.4k
事業を差別化する技術を生み出す技術
pyama86
2
450
日経のデータベース事業とElasticsearch
hinatades
PRO
0
260
ExaDB-XSで利用されているExadata Exascaleについて
oracle4engineer
PRO
3
280
AWSではじめる Web APIテスト実践ガイド / A practical guide to testing Web APIs on AWS
yokawasa
8
760
Platform Engineeringで クラウドの「楽しくない」を解消しよう
jacopen
4
160
エンジニア主導の企画立案を可能にする組織とは?
recruitengineers
PRO
1
280
役員・マネージャー・著者・エンジニアそれぞれの立場から見たAWS認定資格
nrinetcom
PRO
4
6.5k
Amazon Athenaから利用時のGlueのIcebergテーブルのメンテナンスについて
nayuts
0
110
OPENLOGI Company Profile for engineer
hr01
1
20k
データベースの負荷を紐解く/untangle-the-database-load
emiki
2
540
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
44
14k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
Automating Front-end Workflow
addyosmani
1369
200k
RailsConf 2023
tenderlove
29
1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
260
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
The Invisible Side of Design
smashingmag
299
50k
Producing Creativity
orderedlist
PRO
344
40k
Transcript
トピックモデル ~ 1週間の献立を考える ~ Tokyo.R #76 LT 2019/03/02 1
自己紹介 2 • 名前 : もらとりあむお • Twitter : @moratoriamuo271
• 趣味 : ・飲酒 (ビールと日本酒) ・ 横浜DeNAベイスターズ ・バドミントン, カラオケ, ボードゲーム • 所属 : 4月から渋谷で働きます…
モチベーション 料理において、献立の決定は面倒くさい!! (プログラミングで名前付けが大変なように?) ↓ レコメンドエンジンを作ってしまおう!! • 同じものばかりオススメされても飽きるし、栄養も偏る • レシピをクラスタリングして、クラスタ別でオススメする 3
レコメンドエンジンの作り方 レシピデータの収集 {rvest}と{stringr} ワードクラウドで可視化 {wordcloud} 文書ターム行列の作成 {RMeCab}と{tm} LDAモデルの適用とトピック数の決定 {topicmodels}と{ldatuning} トピックによるレシピの分類とレコメンド
{tidytext}と自作関数 4
レシピデータの収集 5 クックパッドの「今日のご飯・おかず」カテゴリから500件収集
ワードクラウドで可視化 6
トピックモデルの説明 •文書が生成される過程をモデル化した確率モデル トピックごとに単語を生成する確率分布があり、単語の集合 である文書はそれぞれトピック(トピック分布)を持ち、それ らによって文書が生成されていくモデル • ユニグラムモデル → 混合ユニグラムモデル →
LDA と拡張 • 文書だけでなく、画像や購買履歴、ネットワークのデータ にも応用可能。 7
ユニグラムモデル 0 0.1 0.2 0.3 0.4 トピック : R データ
分析 前処理 パイプ 宇宙 8 <文書1> データの分析を する工程の9割 は前処理だ。汚 いデータ… <文書3> データ分析、そ れは宇宙。神。 … <文書2> パイプ演算子は 分析の工程を見 やすくする。パ イプはいいぞ…
混合ユニグラムモデル 0 0.1 0.2 0.3 0.4 0.5 トピック : スポーツ
野球 サッカー 選手 栄養 9 0 0.1 0.2 0.3 0.4 トピック : R データ 分析 前処理 パイプ 宇宙 0 0.1 0.2 0.3 0.4 0.5 トピック : 料理 切る 焼く 弱火 卵 <文書1> データの分析を する工程の9割 は前処理だ。汚 いデータ… <文書2> プロ野球の開幕 に向けて若手選 手がキャンプの … <文書3> ジャガイモを細 かく切って、カ リッとなるよう 焼きます… 0 0.1 0.2 0.3 0.4 0.5 0.6 トピック分布 R スポーツ 料理
LDA(Latent Dirichlet Allocation) 0 0.1 0.2 0.3 0.4 0.5 野球
サッカー 選手 栄養 10 0 0.1 0.2 0.3 0.4 データ 分析 前処理 パイプ 宇宙 0 0.1 0.2 0.3 0.4 0.5 切る 焼く 弱火 卵 <文書1> 過去のデータを 用いて、野球に おけるバントの 効果を分析… <文書2> スポーツ選手が アスリートとし ての身体を維持 するために卵料 理… 0 0.2 0.4 0.6 0.8 文書1のトピック分布 R スポーツ 料理 0 0.2 0.4 0.6 0.8 文書2のトピック分布 R スポーツ 料理
トピック数の決定方法 • パープレキシティ(perplexity)で評価 負の対数尤度から計算される値。testデータを使用。低い方が良いモデル。 • {ldatuning}パッケージを使用 4つの論文で提案された指標でモデルを評価。 • 変分下限でモデル評価 変分ベイズ法を用いて推定をしている場合。
• ディリクレ過程でトピック数もモデル化 階層ディリクレ過程を用いるとトピック数の推定が可能。 11
ldatuningとperplexity 12
分類と解釈をしてみる • Topic 3 グラタン, シチュー, スープ • Topic 8
唐揚げなど鶏肉料理 • Topic 15 サラダ • Topic 18 野菜炒め 13
レコメンドエンジンの完成 14
参考文献 • 岩田『トピックモデル』 • 佐藤『トピックモデルによる統計的潜在意味解析』 • 松浦『StanとRでベイズ統計モデリング』 • 小林『Rによるやさしいテキストマイニング[機械学習編]』 •
『Select number of topics for LDA model』 https://cran.r-project.org/web/packages/ldatuning/vignettes/topics.html • 『蒙古タンメン中本コーパスに対してのLDAの適用とトピック数の探索』 http://kamonohashiperry.com/archives/1619 • 『[R] トピックモデル(LDA)を用いた大量文書の教師なし分類』 https://qiita.com/YM_DSKR/items/017a5dddeb56fcdf1054 15
ENJOY!! 16