Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
静岡点群サポートチームとしての 迅速な三次元地図共有とオープン化
Search
furuhashlab
August 06, 2021
Research
0
170
静岡点群サポートチームとしての 迅速な三次元地図共有とオープン化
日本地図学会 防災委員会
防災学術連携体
https://janet-dr.com/
© mapconcierger, CC BY-SA 4.0
furuhashlab
August 06, 2021
Tweet
Share
More Decks by furuhashlab
See All by furuhashlab
津田塾 地理情報システム入門2022 #02
furuhashilab
0
170
津田塾地理情報システム入門2022 #01
furuhashilab
0
210
空間情報システム入門I #06
furuhashilab
0
130
20220712_情報社会論 #13
furuhashilab
0
180
20220705_情報社会論 #12
furuhashilab
0
210
空間情報システム入門I #03
furuhashilab
0
170
20220628_情報社会論 #11
furuhashilab
0
220
空間情報システム入門I #02
furuhashilab
0
170
20220622_情報社会論 #10
furuhashilab
0
200
Other Decks in Research
See All in Research
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
130
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
250
Generative Models 2025
takahashihiroshi
21
12k
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
470
学生向けアンケート<データサイエンティストについて>
datascientistsociety
PRO
0
4.2k
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
110
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
920
数理最適化と機械学習の融合
mickey_kubo
15
9k
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
320
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
610
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
830
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
290
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
The Pragmatic Product Professional
lauravandoore
35
6.8k
Building Applications with DynamoDB
mza
95
6.5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
It's Worth the Effort
3n
185
28k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
980
Thoughts on Productivity
jonyablonski
69
4.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
ࡂֶज़࿈ܞମɾྩ݄ւࢢͷ࠭ࡂʹؔ͢Δۓٸ࿈བྷձຊਤֶձɾࡂҕһձ ੩Ԭ܈αϙʔτνʔϜͱͯ͠ͷ ਝͳࡾ࣍ݩਤڞ༗ͱΦʔϓϯԽ ݹڮେ ຊਤֶձ੨ࢁֶӃେֶ$SJTJT.BQQFST+"1"/ ࡂυϩʔϯٹԉୂ%30/&#*3%ୂ NBQPDPODJFSHF $$#:4"
ݹڮେ5BJDIJ'636)"4)* !NBQDPODJFSHF
0QFO4USFFU.BQ 5IF'SFF8JLJ8PSME.BQ
IUUQTEFNPGNBQDPNMBUMPO[PPNDBNFSBUIFUBDBNFSBQIJ
σδλϧπΠϯ
IUUQTJOGPUPLZPEJHJUBMUXJONFUSPUPLZPMHKQ
IUUQTUXJUUFSDPN.JUBNB4BLVNBSVTUBUVT IUUQTUXJUUFSDPNOPSJUTVOFUTVOFTUBUVT IUUQTQSUJNFTKQNBJOIUNMSEQIUNM IUUQTQSUJNFTKQNBJOIUNMSEQIUNM IUUQTXXXNMJUHPKQQMBUFBVOFXTFSWJDF IUUQTXXXNMJUHPKQQMBUFBVOFXTFSWJDF
None
ɹ© DRONEBIRD/CrisisMappers Japan, CC BY 4.0 https://github.com/dronebird/oam_kanagawa20191014sagamihara00 ૬ݪࢢ۠ ݄
ɹ© DRONEBIRD/CrisisMappers Japan, CC BY 4.0 https://github.com/dronebird?q=kimitsu ܅ࢢ ݄
݄ ւ࠭ࡂ
ւࢢͱ ࡂڠఆక͍݁ͯ͠ͳ͍ɻ
ͷؾ݅ ௨ৗͷυϩʔϯ ӡ༻͍͠ɻ ʢશఱީܕυϩʔϯ͕ඞཁʣ
ʮ7JSUVBM4IJ[VPLBʯ ʮ࢜ࢁνϟϨϯδϓϥοτϑΥʔϜʯ ؔऀ͔Β l੩Ԭ܈αϙʔτνʔϜʹ Λ͔͚ΒΕΔɻ
IUUQXXXQSFGTIJ[VPLBKQBMMLJTIBOTGDECGEGFBFDFFBCD 0QFO%PDVNFOU
IUUQTXXXGVKJTBODIBMMFOHFPSKQJOEFYQIQQBHF
࠷ऴతʹ l੩Ԭ܈αϙʔτνʔϜz ͱ໊ͯ͠ࢀՃɻ
None
݄ʹ ੩Ԭݝ͕υϩʔϯʹΑΔ ಈըࡱӨ
None
IUUQTXXXHFPTQBUJBMKQDLBOEBUBTFUBUBNJNPWJF
݄ʹ ੩Ԭݝ͕υϩʔϯʹΑΔ ಈըࡱӨ
݄ʹ ੩Ԭݝ͕υϩʔϯʹΑΔ ಈըࡱӨ ˠ݄ʹ੩Ԭ܈σʔλ αϙʔτνʔϜ͕ղੳ
݄ޕલʹ ΦϧιϞβΠΫը૾ͳͲ ϑΥτάϥϝτϦղੳ݁ՌΛ ڞ༗४උ
None
݄ޕޙʹ (ۭؒใηϯλʔ্Ͱެ։ɻ ˍ
IUUQTXXXHFPTQBUJBMKQDLBOEBUBTFUBUBNJJ[VTBOTIJ[VPLBQSFG
IUUQTYWJFXCPTBJHPKQWJFXJOEFYIUNM BQQJEGGGGDECCCFBGBG
݄ʙ ੩Ԭݝͱຽؒۀऀ͕࿈ܞͯ͠ ඃࡂͷۭࡱɾϨʔβʔܭଌΛ࣮ࢪɻ ɹɾ੩Ԭݝ͇᷂౦ ɹɾ੩Ԭݝ͇᷂ΠϯσΟʔωοτϫʔΫ
੩Ԭݝͷσʔλ ͯ͢Φʔ ϓϯσʔλͱͯ͠ެ։ʂ ˍ
Φʔ ϓϯσʔλԽ͞ΕͨσʔλΛ ੩Ԭ܈αϙʔτνʔϜ͕ ࣍ʑͱੳɺମੵܭࢉͳͲ ఆྔԽ͞Εͨใͱͯ͠ ੩ԬݝʹϑΟʔυόοΫ
IUUQTHJUIVCDPNDSJTJTNBQQFSTKBQBOBUBNJJ[VTBOWTIJ[VPLBVBW@MJEBS
IUUQTDSJTJTNBQQFSTKBQBOHJUIVCJPBUBNJJ[VTBOWTIJ[VPLBVBW@MJEBS
ͦͷޙ ଓʑͱ(ۭؒใηϯλʔʹ ֤৫ͷσʔλ͕ެ։ʂ ݄ւࢢੴྲྀࡂ 5"(
IUUQTXXXHFPTQBUJBMKQDLBOEBUBTFU UBHT&##&$&#&##&#&$'&'#&#&#%&"&#
Ճ͑ͯ ࠃཧӃཧӃਤ ࡂՊݚCPTBJ9WJFXʹ ༷ʑͳσʔλ͕ެ։
ͦͷ΄ͱΜͲ͕ ൃࡂޙ̏ޙ Ҏ߱ʹެ։ɻ
੩Ԭ܈αϙʔτνʔϜ͕ ػೳͨ͠ཧ༝ ීஈ͔ΒͷίϛϡχςΟ׆ಈ 0QFOCZ%FGBVMUͷจԽ 4/4ʹΑΔޮతͳӡ༻
ল ͬͱૣ͘ެ։Ͱ͖ͨͣɻ ൃࡂʹެ։͢ΔͨΊͷ࢈ֶͷࡂ ରԠίϛϡχςΟ࿈ܞɻ ఆྔੳͷܭࢉख๏Φʔ ϓϯԽ Φʔ ϓϯͳσδλϧπΠϯσʔλͷ֦ॆ
IUUQTUPHFUUFSDPNMJ
෭ࣄ ʮΦʔϓϯσʔλͷॏཁੑɻࢲࣗɺ͕࣌ม Θͬͨͳͱ௧ײɻ࣌ؒͰग़ͯ͘ΔɻϔϦඈ ͳ͍͔Βυϩʔϯۭࡱͯ͠σʔλղੳ࣌ؒ ͰݟΒΕΔɻͦΕΛݝி৫Ͱແ͘֎ͷํʑ ͕αϙʔτͯ͠Լ͞ΔɻσʔλΛΦʔϓϯʹ͠ ͯɺ͜Μͳࣄ͕ग़དྷΔͱͬͯԼ͞Δํʑ ͍ͬͺ͍ɻʯ
෭ࣄ ʮΦʔϓϯσʔλͷॏཁੑɻࢲࣗɺ͕࣌ มΘͬͨͳͱ௧ײɻ࣌ؒͰग़ͯ͘ΔɻϔϦ ඈͳ͍͔Βυϩʔϯۭࡱͯ͠σʔλղੳ࣌ ؒͰݟΒΕΔɻͦΕΛݝி৫Ͱແ͘֎ͷ ํʑ͕αϙʔτͯ͠Լ͞ΔɻσʔλΛΦʔϓ ϯʹͯ͠ɺ͜Μͳࣄ͕ग़དྷΔͱͬͯԼ͞Δ ํʑ͍ͬͺ͍ɻʯ
ຊͷҙຯͰͷ ɹʮ0QFOCZ%FGBVMUʯ ࣾձ
$$#:ͱ0%C- σϡΞϧϥΠηϯε͕ ͜Ε͔ΒͷͨΓલʹʂ
ݹڮେ5BJDIJ'636)"4)* !NBQDPODJFSHF Ұԯ૯ҏೳԽ