Révolution française, tant du point de vue politique que du point de vue de l'instauration d'un nouveau système éducatif : il participe à la création de l'École normale de l'an III et de l'École polytechnique (en 1794), deux écoles où il enseigne la géométrie. Il concourt également avec Berthollet, Chaptal et Laplace à la création de l'École d'arts et métiers. Il est également membre de la commission des sciences et des arts lors de la campagne d'Italie (1796–1797), et chargé de mission dans l'expédition d'Égypte (1798–1799). (1784)
est la r´ egularit´ e <latexit sha1_base64="xtJlWHp4E1PWMU9pCMI1LHPPgQI=">AABB9HictVxLcxu5EYY3r7Xz8ianVC6TaJ3ybjmKrGxVUrWVqpUlWdaatmWTkr27tF18jGjaJIeeIekHV/8jh9xSueYnJMfkL+QfZE/5C+kHMMCQmGmM4hglCQPi6240gEZ3Y+judDTMZltb/7rw3re+/Z3vfu/9i5e+/4Mf/ujHlz/4yUmWzNNefNxLRkn6qNvJ4tFwEh/PhrNR/Giaxp1xdxQ/7L7Yxc8fLuI0GyaT1uzNNH487gwmw9NhrzODpuTyz9R9NVexGkGJVQQ/mZrB35HqwO9UfaMG8Dk+pWoIn3yjoqeXN7Y2t+hftF65risbSv87Sj6IjlVb9VWiekBrDDwmQKlHVDMoX6nraktNoe2xWhKnGfDqkURn6hJg59Arhh4daH0Bvwfw9JVuncDzmORGdA+4jOAnBWSkrgAmgX5pPqIePSNlbC2jvSSaKNsb+NvVtMbQOlPPoFXCmZ6hOBzLTJ2q39MYhjCmKbXg6Hqaypy0wrNkRzUDClNow3ofPk+h3iOk0XNEmIzGjrrt0Of/pp7Yis893XcO84tSXoESqaYefZJT6KgF0Y9oNufwGcszAs4DoBDrMWLtFel6TKOfQP8ltN+FckY1o5MulCW1nlUid6H4kLsi8gCKD3kgIhtQfMiGiDyC4kMeaSRiU9K5H9+E4sM3Rc73ofiQ90XkAyg+5AMReQLFhzwRkV9C8SG/FJE3ofiQN0XkbSg+5G0R2YLiQ7ZE5DEUH/JYRO5D8SH3NbJ8p6ZQEqIzFHblDtSLPNBSjKBlR5TvBllHH/ZGwJ7ulWDlXb0Hf/3YvQCdxiXY/YB1d1qClVfeAdhIP1a2RbfoNPFhb4nYQ1gBfuyhiP1cPS/Bfh6w016UYOW91oB+fqxsfe/Akx97R8TehZofK59R96DFj70XcGJMS7BHIva+elmCDbH6aQlWtvtNsCt+rHxOtaC/HxtiTeclWNmenoAH48fKp9VDaPVjH4rYR+p1CfaRiP0CrLsf+0XACfu2BGvO2Et0ggzIH4lhx1ZR6+S7EmtToNYR+I/ys2VEvnEX2iXMIMcMCDMWEQc54iAQ0cgRjWC5styOZuTvylyaOaIZiOjmZxPWZmL/ft6/T1GcjNjLEXsriCqPFOfajGVB3oVpkZCz/OTCWsiYktx+Yy3W66Ha8hrEvQKC1/YzWvnXKFrCCAo1VUXtWX7GMzKi5yrEK4rezCgNDxk3y62Ci3otoroeVFdEvfGg3oiouQc1F1ELD2ohouzOd3HtgBVg9Y9zsaQnXgHsI5eXCLyCHTh1bsEejWD9HIEX+IBa7sHfJsXeUqmSDKN5PCcxy/G4YIlTqC3VBrTbqHCP4mvOt8QgGfe8p2N8fMLcxlLvObbCZ/lJHuUZk3A6Q5JnkNNBbzGi/VSPzm1qOSPvjmv18LfyfW9q9fD7pPEz8uK5Vg8/09LPziF7S2Nb58A2YTdNtfZtvS4Nzr8wDVO/RKcuWlyc1bFeM0jvdU36h3pmDs8xL7tUY/3Yej0amTO+rDC+OjSsnjNHz/WooPfEXq+pRbVHMtFxr63XlSGhU3Si5bBPdWcG+/T1zJh6PRpH4HHtUsy9dOp1V+80H42t16NxojjveUaevKnXozGgZ9aHrdejgdmWjo7zbb2uZUcNcOxs63Wt+oSywJgD4jXPLdYrSslPcnP7b4Rsjevzr59jmLN5kscI1ZSsb1tOp5ufZdUSGX8hBqs2qykH+hdzxwcr0liqbTG+YhlmhfN9nY4941HzDdBiBLuf7wCknPkIJDQ5Cb6neULUqjHFkRnctojDVXK6gmrr1pnoLVq+nDUqtj2lVikus6O1emyTvc5o7U3JJ2yQZiU9NEpnuIyipKFGQUMyvTq6e6v3a1H7WyJuuoKY5iutRzdCfJNWHaf6tN50dHxF3/LMoPCdj12/mG0+1dYGY56EbBHKUsXT7WfySG4bnqvXlM1x82cRzSjaqwVZjSHdSGViFGqyxeyNL+nZ0j6mOznkwTR6MI+RpjJVfGuGWXTMp0dkUV17K/FGfZkMHdczsrrGHlejBw564EHXj3F24cS4C7UWxAzH8NQKiHIu5bpKSOOp+nV+O5rQDFZH9KOChTQ02N7EBQtZFWU/K1B5BWhcDRylh9NYpWPw7TVKctTvk8fGrkXLf4Vubs39dofWePlqLs/E9InrNnGNaNfwrS4/rXJgCZbeT7bJf60eJfKrwxFtqMT1icOZ9TKhG39+A2FKnvGIdpu0O4q93fzU6ieG05Eyd+d4m52QhYzI/kVwPiW0JiP6cd8dMDfobBFGZCND7M4w9258vs5QXGPWjxsqfqvBrreYbNmc+Bu67u7KaC1yxMDnwNnK2jY6aZAvGBPXVFt3u7erTx9E2vck3FXCFO1auUr8P6Lf5sesk421FYEaxhnItK3zzUdCMQvqqEOnfLUNMn1dKT/MZXiipbbnn5Xpw4JkexRxoTx4WveBc4+emReukpTkztb68Dlalc1FytMVPeJoTymKZ7s/0Ccwyn2NTskN2nNtWiUDWAWzPIowfaUs8irfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXClHsKp5/b6g3eTXerrSq5rPhNbi2NnLX0PrL+C3kds8h9HpFqzCDVoDTME+WY1wS7TWI4zXjQIvszINLfts+dk1aXq5LeeJr9m62Rh7UZvKEa2a1zprYernofHcofE8UIctumu0WjTtxhI9FWOLlr6tDOVXh1urBuW5SFn2yAxqGCClG0uFUe2LVOUY36DeirS2RFod2K3ubYC750OQ/r2+uru/zk/3SN0k36ZHHhjHL33apUPyuUxrdaTGFJDzJ9q+uru/TS3IvUsWFCnze5y4Y/jWqUflLJf0V/pkS8jOW4tg3lt6pfsYG9um+m/XkGPaExntS4P4hHrEWn5XjmjFIm06PkdEmf8O+VTsd1THzG5vOydRwZ+w8SbvKsuLI4UJ6V/KvB2uRa+HTvwaUUw41951F2jVn2GkwBiTSfB7lhnNEJ5yfJPAHm2X7Oe6neJbvIkj0SZJvVR/CLAxHPXate6uLTNiM7aPoSdq3c66r4fMbxTMUeJ3nhu9Dp1qY+2jLleez0ero0+54nOVHuYrfK0+5tTHjSxslFfEtNWnwVxYonpcGBPCpd4o6shfT/I6MvPtVChl09tQLmYa2MY8o3hJeg8UET7v7qrXm/tIGEd3jV6XsC41bpEoYTYu0fkB19JiVuri2jnErRcrT6ORcxKVnRSGuntaWPvNFjIm6zdSUs6Ge7uytwtRipyFYQo9xW/0lsWHLs1PoeDvSPmiQ8MxJHfYBP92R+2q/XfwNsRLXeeMZkQtaAv6K7F3R4+z2KNaRy8d6i79EA7hPIaga0n6IZ2kdWVnyrLkLvVw+q/ICqQqFqW3PeuPweUij2SdU53xDMmyyaMZKvNdnLpjMRxCRlLkEs6H7zWkUZwq852memMw1OURFDnU4WHeYwibc9u7Pi+XU7W+1rmE8uBTwNy4GBze/JXHKrZfiIVKnRl59xzQOpxWUDenxf86DsPHcqrPK5RbRt81ex4w69wv1hlZ9Ifr7xnLLWQ1l3MM55nko7Pekp8f+31RrZlKnNG8e/roj9o1YHgtFedBZekY764iK28oFbwX8MmQqP+ov1+Qv43wMqdRJkcdSuaeopya6SFTM9+49I3OfBYik6VTJlORmo0jmvRG7K46VDfhZzf3AOu+HcrfpeS/iPV/f7YPradkPUwWnTMHbWqLKfthb9H69Gzfny2TGN/l5Xd7W9CCd+ENasX3fO9Sf3zXt1UYW/k3SHiv31GJ6hciktXbPbuvujCC4s0b54DM93wjepees1j85tk44G7RvD+1KtGSPpHfLOiW4ruOlD1aq1N9V483B/iGfSfPD0XqN9TW0XYez1yJ81Ep56MVzvxt9CKH185n1e9mlXHZdbj089zZQvdLKM6293nVudG9Ui78Dno1flCBHzhSNkn7LygSTlV1Nm9eQXOuZXJvWCfKZCJZDxhndvL5ro5sFxW8FgHjv12Kvu1IegCydCn/HdENW0r0Rlo3+yQ9v+lYnUm9VSGt/h7l08sb11f/L4P1ysn25vWtzev3tzc+u6H/n4P31c/VL9VV2OO/U58BtSN1DBz+qP6m/qH+ubPY+dPOn3f+wl3fu6AxP1WFfzt//S+s/Kxx</latexit> <latexit sha1_base64="xtJlWHp4E1PWMU9pCMI1LHPPgQI=">AABB9HictVxLcxu5EYY3r7Xz8ianVC6TaJ3ybjmKrGxVUrWVqpUlWdaatmWTkr27tF18jGjaJIeeIekHV/8jh9xSueYnJMfkL+QfZE/5C+kHMMCQmGmM4hglCQPi6240gEZ3Y+judDTMZltb/7rw3re+/Z3vfu/9i5e+/4Mf/ujHlz/4yUmWzNNefNxLRkn6qNvJ4tFwEh/PhrNR/Giaxp1xdxQ/7L7Yxc8fLuI0GyaT1uzNNH487gwmw9NhrzODpuTyz9R9NVexGkGJVQQ/mZrB35HqwO9UfaMG8Dk+pWoIn3yjoqeXN7Y2t+hftF65risbSv87Sj6IjlVb9VWiekBrDDwmQKlHVDMoX6nraktNoe2xWhKnGfDqkURn6hJg59Arhh4daH0Bvwfw9JVuncDzmORGdA+4jOAnBWSkrgAmgX5pPqIePSNlbC2jvSSaKNsb+NvVtMbQOlPPoFXCmZ6hOBzLTJ2q39MYhjCmKbXg6Hqaypy0wrNkRzUDClNow3ofPk+h3iOk0XNEmIzGjrrt0Of/pp7Yis893XcO84tSXoESqaYefZJT6KgF0Y9oNufwGcszAs4DoBDrMWLtFel6TKOfQP8ltN+FckY1o5MulCW1nlUid6H4kLsi8gCKD3kgIhtQfMiGiDyC4kMeaSRiU9K5H9+E4sM3Rc73ofiQ90XkAyg+5AMReQLFhzwRkV9C8SG/FJE3ofiQN0XkbSg+5G0R2YLiQ7ZE5DEUH/JYRO5D8SH3NbJ8p6ZQEqIzFHblDtSLPNBSjKBlR5TvBllHH/ZGwJ7ulWDlXb0Hf/3YvQCdxiXY/YB1d1qClVfeAdhIP1a2RbfoNPFhb4nYQ1gBfuyhiP1cPS/Bfh6w016UYOW91oB+fqxsfe/Akx97R8TehZofK59R96DFj70XcGJMS7BHIva+elmCDbH6aQlWtvtNsCt+rHxOtaC/HxtiTeclWNmenoAH48fKp9VDaPVjH4rYR+p1CfaRiP0CrLsf+0XACfu2BGvO2Et0ggzIH4lhx1ZR6+S7EmtToNYR+I/ys2VEvnEX2iXMIMcMCDMWEQc54iAQ0cgRjWC5styOZuTvylyaOaIZiOjmZxPWZmL/ft6/T1GcjNjLEXsriCqPFOfajGVB3oVpkZCz/OTCWsiYktx+Yy3W66Ha8hrEvQKC1/YzWvnXKFrCCAo1VUXtWX7GMzKi5yrEK4rezCgNDxk3y62Ci3otoroeVFdEvfGg3oiouQc1F1ELD2ohouzOd3HtgBVg9Y9zsaQnXgHsI5eXCLyCHTh1bsEejWD9HIEX+IBa7sHfJsXeUqmSDKN5PCcxy/G4YIlTqC3VBrTbqHCP4mvOt8QgGfe8p2N8fMLcxlLvObbCZ/lJHuUZk3A6Q5JnkNNBbzGi/VSPzm1qOSPvjmv18LfyfW9q9fD7pPEz8uK5Vg8/09LPziF7S2Nb58A2YTdNtfZtvS4Nzr8wDVO/RKcuWlyc1bFeM0jvdU36h3pmDs8xL7tUY/3Yej0amTO+rDC+OjSsnjNHz/WooPfEXq+pRbVHMtFxr63XlSGhU3Si5bBPdWcG+/T1zJh6PRpH4HHtUsy9dOp1V+80H42t16NxojjveUaevKnXozGgZ9aHrdejgdmWjo7zbb2uZUcNcOxs63Wt+oSywJgD4jXPLdYrSslPcnP7b4Rsjevzr59jmLN5kscI1ZSsb1tOp5ufZdUSGX8hBqs2qykH+hdzxwcr0liqbTG+YhlmhfN9nY4941HzDdBiBLuf7wCknPkIJDQ5Cb6neULUqjHFkRnctojDVXK6gmrr1pnoLVq+nDUqtj2lVikus6O1emyTvc5o7U3JJ2yQZiU9NEpnuIyipKFGQUMyvTq6e6v3a1H7WyJuuoKY5iutRzdCfJNWHaf6tN50dHxF3/LMoPCdj12/mG0+1dYGY56EbBHKUsXT7WfySG4bnqvXlM1x82cRzSjaqwVZjSHdSGViFGqyxeyNL+nZ0j6mOznkwTR6MI+RpjJVfGuGWXTMp0dkUV17K/FGfZkMHdczsrrGHlejBw564EHXj3F24cS4C7UWxAzH8NQKiHIu5bpKSOOp+nV+O5rQDFZH9KOChTQ02N7EBQtZFWU/K1B5BWhcDRylh9NYpWPw7TVKctTvk8fGrkXLf4Vubs39dofWePlqLs/E9InrNnGNaNfwrS4/rXJgCZbeT7bJf60eJfKrwxFtqMT1icOZ9TKhG39+A2FKnvGIdpu0O4q93fzU6ieG05Eyd+d4m52QhYzI/kVwPiW0JiP6cd8dMDfobBFGZCND7M4w9258vs5QXGPWjxsqfqvBrreYbNmc+Bu67u7KaC1yxMDnwNnK2jY6aZAvGBPXVFt3u7erTx9E2vck3FXCFO1auUr8P6Lf5sesk421FYEaxhnItK3zzUdCMQvqqEOnfLUNMn1dKT/MZXiipbbnn5Xpw4JkexRxoTx4WveBc4+emReukpTkztb68Dlalc1FytMVPeJoTymKZ7s/0Ccwyn2NTskN2nNtWiUDWAWzPIowfaUs8irfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXClHsKp5/b6g3eTXerrSq5rPhNbi2NnLX0PrL+C3kds8h9HpFqzCDVoDTME+WY1wS7TWI4zXjQIvszINLfts+dk1aXq5LeeJr9m62Rh7UZvKEa2a1zprYernofHcofE8UIctumu0WjTtxhI9FWOLlr6tDOVXh1urBuW5SFn2yAxqGCClG0uFUe2LVOUY36DeirS2RFod2K3ubYC750OQ/r2+uru/zk/3SN0k36ZHHhjHL33apUPyuUxrdaTGFJDzJ9q+uru/TS3IvUsWFCnze5y4Y/jWqUflLJf0V/pkS8jOW4tg3lt6pfsYG9um+m/XkGPaExntS4P4hHrEWn5XjmjFIm06PkdEmf8O+VTsd1THzG5vOydRwZ+w8SbvKsuLI4UJ6V/KvB2uRa+HTvwaUUw41951F2jVn2GkwBiTSfB7lhnNEJ5yfJPAHm2X7Oe6neJbvIkj0SZJvVR/CLAxHPXate6uLTNiM7aPoSdq3c66r4fMbxTMUeJ3nhu9Dp1qY+2jLleez0ero0+54nOVHuYrfK0+5tTHjSxslFfEtNWnwVxYonpcGBPCpd4o6shfT/I6MvPtVChl09tQLmYa2MY8o3hJeg8UET7v7qrXm/tIGEd3jV6XsC41bpEoYTYu0fkB19JiVuri2jnErRcrT6ORcxKVnRSGuntaWPvNFjIm6zdSUs6Ge7uytwtRipyFYQo9xW/0lsWHLs1PoeDvSPmiQ8MxJHfYBP92R+2q/XfwNsRLXeeMZkQtaAv6K7F3R4+z2KNaRy8d6i79EA7hPIaga0n6IZ2kdWVnyrLkLvVw+q/ICqQqFqW3PeuPweUij2SdU53xDMmyyaMZKvNdnLpjMRxCRlLkEs6H7zWkUZwq852memMw1OURFDnU4WHeYwibc9u7Pi+XU7W+1rmE8uBTwNy4GBze/JXHKrZfiIVKnRl59xzQOpxWUDenxf86DsPHcqrPK5RbRt81ex4w69wv1hlZ9Ifr7xnLLWQ1l3MM55nko7Pekp8f+31RrZlKnNG8e/roj9o1YHgtFedBZekY764iK28oFbwX8MmQqP+ov1+Qv43wMqdRJkcdSuaeopya6SFTM9+49I3OfBYik6VTJlORmo0jmvRG7K46VDfhZzf3AOu+HcrfpeS/iPV/f7YPradkPUwWnTMHbWqLKfthb9H69Gzfny2TGN/l5Xd7W9CCd+ENasX3fO9Sf3zXt1UYW/k3SHiv31GJ6hciktXbPbuvujCC4s0b54DM93wjepees1j85tk44G7RvD+1KtGSPpHfLOiW4ruOlD1aq1N9V483B/iGfSfPD0XqN9TW0XYez1yJ81Ep56MVzvxt9CKH185n1e9mlXHZdbj089zZQvdLKM6293nVudG9Ui78Dno1flCBHzhSNkn7LygSTlV1Nm9eQXOuZXJvWCfKZCJZDxhndvL5ro5sFxW8FgHjv12Kvu1IegCydCn/HdENW0r0Rlo3+yQ9v+lYnUm9VSGt/h7l08sb11f/L4P1ysn25vWtzev3tzc+u6H/n4P31c/VL9VV2OO/U58BtSN1DBz+qP6m/qH+ubPY+dPOn3f+wl3fu6AxP1WFfzt//S+s/Kxx</latexit> <latexit sha1_base64="xtJlWHp4E1PWMU9pCMI1LHPPgQI=">AABB9HictVxLcxu5EYY3r7Xz8ianVC6TaJ3ybjmKrGxVUrWVqpUlWdaatmWTkr27tF18jGjaJIeeIekHV/8jh9xSueYnJMfkL+QfZE/5C+kHMMCQmGmM4hglCQPi6240gEZ3Y+judDTMZltb/7rw3re+/Z3vfu/9i5e+/4Mf/ujHlz/4yUmWzNNefNxLRkn6qNvJ4tFwEh/PhrNR/Giaxp1xdxQ/7L7Yxc8fLuI0GyaT1uzNNH487gwmw9NhrzODpuTyz9R9NVexGkGJVQQ/mZrB35HqwO9UfaMG8Dk+pWoIn3yjoqeXN7Y2t+hftF65risbSv87Sj6IjlVb9VWiekBrDDwmQKlHVDMoX6nraktNoe2xWhKnGfDqkURn6hJg59Arhh4daH0Bvwfw9JVuncDzmORGdA+4jOAnBWSkrgAmgX5pPqIePSNlbC2jvSSaKNsb+NvVtMbQOlPPoFXCmZ6hOBzLTJ2q39MYhjCmKbXg6Hqaypy0wrNkRzUDClNow3ofPk+h3iOk0XNEmIzGjrrt0Of/pp7Yis893XcO84tSXoESqaYefZJT6KgF0Y9oNufwGcszAs4DoBDrMWLtFel6TKOfQP8ltN+FckY1o5MulCW1nlUid6H4kLsi8gCKD3kgIhtQfMiGiDyC4kMeaSRiU9K5H9+E4sM3Rc73ofiQ90XkAyg+5AMReQLFhzwRkV9C8SG/FJE3ofiQN0XkbSg+5G0R2YLiQ7ZE5DEUH/JYRO5D8SH3NbJ8p6ZQEqIzFHblDtSLPNBSjKBlR5TvBllHH/ZGwJ7ulWDlXb0Hf/3YvQCdxiXY/YB1d1qClVfeAdhIP1a2RbfoNPFhb4nYQ1gBfuyhiP1cPS/Bfh6w016UYOW91oB+fqxsfe/Akx97R8TehZofK59R96DFj70XcGJMS7BHIva+elmCDbH6aQlWtvtNsCt+rHxOtaC/HxtiTeclWNmenoAH48fKp9VDaPVjH4rYR+p1CfaRiP0CrLsf+0XACfu2BGvO2Et0ggzIH4lhx1ZR6+S7EmtToNYR+I/ys2VEvnEX2iXMIMcMCDMWEQc54iAQ0cgRjWC5styOZuTvylyaOaIZiOjmZxPWZmL/ft6/T1GcjNjLEXsriCqPFOfajGVB3oVpkZCz/OTCWsiYktx+Yy3W66Ha8hrEvQKC1/YzWvnXKFrCCAo1VUXtWX7GMzKi5yrEK4rezCgNDxk3y62Ci3otoroeVFdEvfGg3oiouQc1F1ELD2ohouzOd3HtgBVg9Y9zsaQnXgHsI5eXCLyCHTh1bsEejWD9HIEX+IBa7sHfJsXeUqmSDKN5PCcxy/G4YIlTqC3VBrTbqHCP4mvOt8QgGfe8p2N8fMLcxlLvObbCZ/lJHuUZk3A6Q5JnkNNBbzGi/VSPzm1qOSPvjmv18LfyfW9q9fD7pPEz8uK5Vg8/09LPziF7S2Nb58A2YTdNtfZtvS4Nzr8wDVO/RKcuWlyc1bFeM0jvdU36h3pmDs8xL7tUY/3Yej0amTO+rDC+OjSsnjNHz/WooPfEXq+pRbVHMtFxr63XlSGhU3Si5bBPdWcG+/T1zJh6PRpH4HHtUsy9dOp1V+80H42t16NxojjveUaevKnXozGgZ9aHrdejgdmWjo7zbb2uZUcNcOxs63Wt+oSywJgD4jXPLdYrSslPcnP7b4Rsjevzr59jmLN5kscI1ZSsb1tOp5ufZdUSGX8hBqs2qykH+hdzxwcr0liqbTG+YhlmhfN9nY4941HzDdBiBLuf7wCknPkIJDQ5Cb6neULUqjHFkRnctojDVXK6gmrr1pnoLVq+nDUqtj2lVikus6O1emyTvc5o7U3JJ2yQZiU9NEpnuIyipKFGQUMyvTq6e6v3a1H7WyJuuoKY5iutRzdCfJNWHaf6tN50dHxF3/LMoPCdj12/mG0+1dYGY56EbBHKUsXT7WfySG4bnqvXlM1x82cRzSjaqwVZjSHdSGViFGqyxeyNL+nZ0j6mOznkwTR6MI+RpjJVfGuGWXTMp0dkUV17K/FGfZkMHdczsrrGHlejBw564EHXj3F24cS4C7UWxAzH8NQKiHIu5bpKSOOp+nV+O5rQDFZH9KOChTQ02N7EBQtZFWU/K1B5BWhcDRylh9NYpWPw7TVKctTvk8fGrkXLf4Vubs39dofWePlqLs/E9InrNnGNaNfwrS4/rXJgCZbeT7bJf60eJfKrwxFtqMT1icOZ9TKhG39+A2FKnvGIdpu0O4q93fzU6ieG05Eyd+d4m52QhYzI/kVwPiW0JiP6cd8dMDfobBFGZCND7M4w9258vs5QXGPWjxsqfqvBrreYbNmc+Bu67u7KaC1yxMDnwNnK2jY6aZAvGBPXVFt3u7erTx9E2vck3FXCFO1auUr8P6Lf5sesk421FYEaxhnItK3zzUdCMQvqqEOnfLUNMn1dKT/MZXiipbbnn5Xpw4JkexRxoTx4WveBc4+emReukpTkztb68Dlalc1FytMVPeJoTymKZ7s/0Ccwyn2NTskN2nNtWiUDWAWzPIowfaUs8irfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXClHsKp5/b6g3eTXerrSq5rPhNbi2NnLX0PrL+C3kds8h9HpFqzCDVoDTME+WY1wS7TWI4zXjQIvszINLfts+dk1aXq5LeeJr9m62Rh7UZvKEa2a1zprYernofHcofE8UIctumu0WjTtxhI9FWOLlr6tDOVXh1urBuW5SFn2yAxqGCClG0uFUe2LVOUY36DeirS2RFod2K3ubYC750OQ/r2+uru/zk/3SN0k36ZHHhjHL33apUPyuUxrdaTGFJDzJ9q+uru/TS3IvUsWFCnze5y4Y/jWqUflLJf0V/pkS8jOW4tg3lt6pfsYG9um+m/XkGPaExntS4P4hHrEWn5XjmjFIm06PkdEmf8O+VTsd1THzG5vOydRwZ+w8SbvKsuLI4UJ6V/KvB2uRa+HTvwaUUw41951F2jVn2GkwBiTSfB7lhnNEJ5yfJPAHm2X7Oe6neJbvIkj0SZJvVR/CLAxHPXate6uLTNiM7aPoSdq3c66r4fMbxTMUeJ3nhu9Dp1qY+2jLleez0ero0+54nOVHuYrfK0+5tTHjSxslFfEtNWnwVxYonpcGBPCpd4o6shfT/I6MvPtVChl09tQLmYa2MY8o3hJeg8UET7v7qrXm/tIGEd3jV6XsC41bpEoYTYu0fkB19JiVuri2jnErRcrT6ORcxKVnRSGuntaWPvNFjIm6zdSUs6Ge7uytwtRipyFYQo9xW/0lsWHLs1PoeDvSPmiQ8MxJHfYBP92R+2q/XfwNsRLXeeMZkQtaAv6K7F3R4+z2KNaRy8d6i79EA7hPIaga0n6IZ2kdWVnyrLkLvVw+q/ICqQqFqW3PeuPweUij2SdU53xDMmyyaMZKvNdnLpjMRxCRlLkEs6H7zWkUZwq852memMw1OURFDnU4WHeYwibc9u7Pi+XU7W+1rmE8uBTwNy4GBze/JXHKrZfiIVKnRl59xzQOpxWUDenxf86DsPHcqrPK5RbRt81ex4w69wv1hlZ9Ifr7xnLLWQ1l3MM55nko7Pekp8f+31RrZlKnNG8e/roj9o1YHgtFedBZekY764iK28oFbwX8MmQqP+ov1+Qv43wMqdRJkcdSuaeopya6SFTM9+49I3OfBYik6VTJlORmo0jmvRG7K46VDfhZzf3AOu+HcrfpeS/iPV/f7YPradkPUwWnTMHbWqLKfthb9H69Gzfny2TGN/l5Xd7W9CCd+ENasX3fO9Sf3zXt1UYW/k3SHiv31GJ6hciktXbPbuvujCC4s0b54DM93wjepees1j85tk44G7RvD+1KtGSPpHfLOiW4ruOlD1aq1N9V483B/iGfSfPD0XqN9TW0XYez1yJ81Ep56MVzvxt9CKH185n1e9mlXHZdbj089zZQvdLKM6293nVudG9Ui78Dno1flCBHzhSNkn7LygSTlV1Nm9eQXOuZXJvWCfKZCJZDxhndvL5ro5sFxW8FgHjv12Kvu1IegCydCn/HdENW0r0Rlo3+yQ9v+lYnUm9VSGt/h7l08sb11f/L4P1ysn25vWtzev3tzc+u6H/n4P31c/VL9VV2OO/U58BtSN1DBz+qP6m/qH+ubPY+dPOn3f+wl3fu6AxP1WFfzt//S+s/Kxx</latexit> <latexit sha1_base64="xtJlWHp4E1PWMU9pCMI1LHPPgQI=">AABB9HictVxLcxu5EYY3r7Xz8ianVC6TaJ3ybjmKrGxVUrWVqpUlWdaatmWTkr27tF18jGjaJIeeIekHV/8jh9xSueYnJMfkL+QfZE/5C+kHMMCQmGmM4hglCQPi6240gEZ3Y+judDTMZltb/7rw3re+/Z3vfu/9i5e+/4Mf/ujHlz/4yUmWzNNefNxLRkn6qNvJ4tFwEh/PhrNR/Giaxp1xdxQ/7L7Yxc8fLuI0GyaT1uzNNH487gwmw9NhrzODpuTyz9R9NVexGkGJVQQ/mZrB35HqwO9UfaMG8Dk+pWoIn3yjoqeXN7Y2t+hftF65risbSv87Sj6IjlVb9VWiekBrDDwmQKlHVDMoX6nraktNoe2xWhKnGfDqkURn6hJg59Arhh4daH0Bvwfw9JVuncDzmORGdA+4jOAnBWSkrgAmgX5pPqIePSNlbC2jvSSaKNsb+NvVtMbQOlPPoFXCmZ6hOBzLTJ2q39MYhjCmKbXg6Hqaypy0wrNkRzUDClNow3ofPk+h3iOk0XNEmIzGjrrt0Of/pp7Yis893XcO84tSXoESqaYefZJT6KgF0Y9oNufwGcszAs4DoBDrMWLtFel6TKOfQP8ltN+FckY1o5MulCW1nlUid6H4kLsi8gCKD3kgIhtQfMiGiDyC4kMeaSRiU9K5H9+E4sM3Rc73ofiQ90XkAyg+5AMReQLFhzwRkV9C8SG/FJE3ofiQN0XkbSg+5G0R2YLiQ7ZE5DEUH/JYRO5D8SH3NbJ8p6ZQEqIzFHblDtSLPNBSjKBlR5TvBllHH/ZGwJ7ulWDlXb0Hf/3YvQCdxiXY/YB1d1qClVfeAdhIP1a2RbfoNPFhb4nYQ1gBfuyhiP1cPS/Bfh6w016UYOW91oB+fqxsfe/Akx97R8TehZofK59R96DFj70XcGJMS7BHIva+elmCDbH6aQlWtvtNsCt+rHxOtaC/HxtiTeclWNmenoAH48fKp9VDaPVjH4rYR+p1CfaRiP0CrLsf+0XACfu2BGvO2Et0ggzIH4lhx1ZR6+S7EmtToNYR+I/ys2VEvnEX2iXMIMcMCDMWEQc54iAQ0cgRjWC5styOZuTvylyaOaIZiOjmZxPWZmL/ft6/T1GcjNjLEXsriCqPFOfajGVB3oVpkZCz/OTCWsiYktx+Yy3W66Ha8hrEvQKC1/YzWvnXKFrCCAo1VUXtWX7GMzKi5yrEK4rezCgNDxk3y62Ci3otoroeVFdEvfGg3oiouQc1F1ELD2ohouzOd3HtgBVg9Y9zsaQnXgHsI5eXCLyCHTh1bsEejWD9HIEX+IBa7sHfJsXeUqmSDKN5PCcxy/G4YIlTqC3VBrTbqHCP4mvOt8QgGfe8p2N8fMLcxlLvObbCZ/lJHuUZk3A6Q5JnkNNBbzGi/VSPzm1qOSPvjmv18LfyfW9q9fD7pPEz8uK5Vg8/09LPziF7S2Nb58A2YTdNtfZtvS4Nzr8wDVO/RKcuWlyc1bFeM0jvdU36h3pmDs8xL7tUY/3Yej0amTO+rDC+OjSsnjNHz/WooPfEXq+pRbVHMtFxr63XlSGhU3Si5bBPdWcG+/T1zJh6PRpH4HHtUsy9dOp1V+80H42t16NxojjveUaevKnXozGgZ9aHrdejgdmWjo7zbb2uZUcNcOxs63Wt+oSywJgD4jXPLdYrSslPcnP7b4Rsjevzr59jmLN5kscI1ZSsb1tOp5ufZdUSGX8hBqs2qykH+hdzxwcr0liqbTG+YhlmhfN9nY4941HzDdBiBLuf7wCknPkIJDQ5Cb6neULUqjHFkRnctojDVXK6gmrr1pnoLVq+nDUqtj2lVikus6O1emyTvc5o7U3JJ2yQZiU9NEpnuIyipKFGQUMyvTq6e6v3a1H7WyJuuoKY5iutRzdCfJNWHaf6tN50dHxF3/LMoPCdj12/mG0+1dYGY56EbBHKUsXT7WfySG4bnqvXlM1x82cRzSjaqwVZjSHdSGViFGqyxeyNL+nZ0j6mOznkwTR6MI+RpjJVfGuGWXTMp0dkUV17K/FGfZkMHdczsrrGHlejBw564EHXj3F24cS4C7UWxAzH8NQKiHIu5bpKSOOp+nV+O5rQDFZH9KOChTQ02N7EBQtZFWU/K1B5BWhcDRylh9NYpWPw7TVKctTvk8fGrkXLf4Vubs39dofWePlqLs/E9InrNnGNaNfwrS4/rXJgCZbeT7bJf60eJfKrwxFtqMT1icOZ9TKhG39+A2FKnvGIdpu0O4q93fzU6ieG05Eyd+d4m52QhYzI/kVwPiW0JiP6cd8dMDfobBFGZCND7M4w9258vs5QXGPWjxsqfqvBrreYbNmc+Bu67u7KaC1yxMDnwNnK2jY6aZAvGBPXVFt3u7erTx9E2vck3FXCFO1auUr8P6Lf5sesk421FYEaxhnItK3zzUdCMQvqqEOnfLUNMn1dKT/MZXiipbbnn5Xpw4JkexRxoTx4WveBc4+emReukpTkztb68Dlalc1FytMVPeJoTymKZ7s/0Ccwyn2NTskN2nNtWiUDWAWzPIowfaUs8irfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXClHsKp5/b6g3eTXerrSq5rPhNbi2NnLX0PrL+C3kds8h9HpFqzCDVoDTME+WY1wS7TWI4zXjQIvszINLfts+dk1aXq5LeeJr9m62Rh7UZvKEa2a1zprYernofHcofE8UIctumu0WjTtxhI9FWOLlr6tDOVXh1urBuW5SFn2yAxqGCClG0uFUe2LVOUY36DeirS2RFod2K3ubYC750OQ/r2+uru/zk/3SN0k36ZHHhjHL33apUPyuUxrdaTGFJDzJ9q+uru/TS3IvUsWFCnze5y4Y/jWqUflLJf0V/pkS8jOW4tg3lt6pfsYG9um+m/XkGPaExntS4P4hHrEWn5XjmjFIm06PkdEmf8O+VTsd1THzG5vOydRwZ+w8SbvKsuLI4UJ6V/KvB2uRa+HTvwaUUw41951F2jVn2GkwBiTSfB7lhnNEJ5yfJPAHm2X7Oe6neJbvIkj0SZJvVR/CLAxHPXate6uLTNiM7aPoSdq3c66r4fMbxTMUeJ3nhu9Dp1qY+2jLleez0ero0+54nOVHuYrfK0+5tTHjSxslFfEtNWnwVxYonpcGBPCpd4o6shfT/I6MvPtVChl09tQLmYa2MY8o3hJeg8UET7v7qrXm/tIGEd3jV6XsC41bpEoYTYu0fkB19JiVuri2jnErRcrT6ORcxKVnRSGuntaWPvNFjIm6zdSUs6Ge7uytwtRipyFYQo9xW/0lsWHLs1PoeDvSPmiQ8MxJHfYBP92R+2q/XfwNsRLXeeMZkQtaAv6K7F3R4+z2KNaRy8d6i79EA7hPIaga0n6IZ2kdWVnyrLkLvVw+q/ICqQqFqW3PeuPweUij2SdU53xDMmyyaMZKvNdnLpjMRxCRlLkEs6H7zWkUZwq852memMw1OURFDnU4WHeYwibc9u7Pi+XU7W+1rmE8uBTwNy4GBze/JXHKrZfiIVKnRl59xzQOpxWUDenxf86DsPHcqrPK5RbRt81ex4w69wv1hlZ9Ifr7xnLLWQ1l3MM55nko7Pekp8f+31RrZlKnNG8e/roj9o1YHgtFedBZekY764iK28oFbwX8MmQqP+ov1+Qv43wMqdRJkcdSuaeopya6SFTM9+49I3OfBYik6VTJlORmo0jmvRG7K46VDfhZzf3AOu+HcrfpeS/iPV/f7YPradkPUwWnTMHbWqLKfthb9H69Gzfny2TGN/l5Xd7W9CCd+ENasX3fO9Sf3zXt1UYW/k3SHiv31GJ6hciktXbPbuvujCC4s0b54DM93wjepees1j85tk44G7RvD+1KtGSPpHfLOiW4ruOlD1aq1N9V483B/iGfSfPD0XqN9TW0XYez1yJ81Ep56MVzvxt9CKH185n1e9mlXHZdbj089zZQvdLKM6293nVudG9Ui78Dno1flCBHzhSNkn7LygSTlV1Nm9eQXOuZXJvWCfKZCJZDxhndvL5ro5sFxW8FgHjv12Kvu1IegCydCn/HdENW0r0Rlo3+yQ9v+lYnUm9VSGt/h7l08sb11f/L4P1ysn25vWtzev3tzc+u6H/n4P31c/VL9VV2OO/U58BtSN1DBz+qP6m/qH+ubPY+dPOn3f+wl3fu6AxP1WFfzt//S+s/Kxx</latexit> du transport optimal? <latexit sha1_base64="QtGQyK7T2RsIOekWCYHFOw7OSS4=">AABB13ictVzdctu4FUa2f5v0L9tOr3rD1ptOtpOmtrsz7cxOp+vYjuONkiiR7CS7SjKURCtMKFEhKedH6+ldp7d9hN62D9Hn6Bu0V32Fnh+AACWQAN00GNsghO+cg0Pg4JwDKMN5EufF5uY/L3zwjW9+69vf+fDipe9+7/s/+OHlj350nKeLbBQdjdIkzR4NwzxK4ll0VMRFEj2aZ1E4HSbRw+HLXfz84WmU5XE66xdv59GTaTiZxSfxKCyg6dnln4wXQZGFs3yeZkWQzot4GiZ/eHZ5Y/P6Jv0L1itbsrIh5L9u+lFwJAZiLFIxEgsxFZGYiQLqiQhFDuUrsSU2xRzanogltGVQi+nzSJyJS4BdQK8IeoTQ+hJ+T+DpK9k6g2ekmRN6BFwS+MkAGYgrgEmhXwZ15BbQ5wuijK11tJdEE2V7C3+HktYUWgvxHFpdONXTF4djKcSJ+B2NIYYxzakFRzeSVBakFZQ8MEZVAIU5tGF9DJ9nUB8RUuk5IExOY0fdhvT5v6gntuLzSPZdiH+TlFegBKInR5+WFEJxSvQDepsL+IzlSYDzBChEcoxYe026ntLoZ9B/Ce13oZxRTelkCGVJrWeNyF0oNuSuE3kAxYY8cCI7UGzIjhPZhWJDdiUSsRnp3I7vQbHhe07O96HYkPedyAdQbMgHTuQxFBvy2In8EooN+aUTeROKDXnTibwNxYa87UT2odiQfSfyCIoNeeRE7kOxIfclsn6lZlBSohM7VuUO1Ks80FIk0LLjlO8GWUcb9obHmh7VYN2reg/+2rF7HjqNarD7HvPupAbrnnkHYCPtWLctukW7iQ17y4k9hBlgxx46sV+IFzXYLzxW2ssarHutdaCfHeu2vnfgyY6948TehZod696j7kGLHXvPY8eY12C7Tux98aoG62P1sxqs2+73wK7Yse59qg/97Vgfa7qowbrt6TF4MHase7d6CK127EMn9pF4U4N95MQ+Butuxz722GHf1WDVHnuJdpAJ+SMRrNgmamG5KrE2B2qhg39S7i0J+cZDaHdhJiVmQpipE3FQIg48EZ0S0fGWKy/taE7+rptLr0T0PBHDcm/CWuHsPy77Yy3xQOyViL0VRJNHiu9ajeWUvAvV4kIW5c6FNZ8xpaX9xlok50Oz5VWIexUEz+3nNPOvUbSEERRqqona83KPZ2RAz02I1xS9qVEqHm5cUVoFE/XGiRpaUEMn6q0F9daJWlhQCyfq1II6daL0yjdxA48ZoPWP72JJTzwD2EeuLwF4BTuw69yCNRrA/OmCF/iAWu7B3x7F3q7SJBlG87hPYpbjScUSZ1Bbig1o11HhHsXXCa2wCCTjnvdkjI9PmNtYyjXHVvis3MmDMmPiTycmeSYlHfQWA1pP7ejcppYz8u641g5/q1z3qtYOv08aPyMvnmvt8IWUvjiH7H2J7Z8D24PVNJfa1/W2NDj/wjRU/RLtumhx8a1O5ZxBem9a0j+Ub+bwHO9ll2qsH11vRyM3xpdXxteGhtZzbui5HRX0ntjrVbWg9UhmMu7V9bYypLSLzqQc+qntm8E+Y/lmVL0djS54XLsUcy+NetvZOy9Ho+vtaBwLznuekSev6u1oTOiZ9aHr7WhgtiWUcb6ut7XsqAGOnXW9rVWfURYYc0A857lFe0UZ+UkLSS0m/6A5W2P6/Ov7GOZsnpYxQjMl7dvW0xmWe1mzRMpfiMCqFS3lQP9iYfhgVRpLse2Mr1iGorK/r9PRezxqvgNaDGD18xmAK2eegIQqJ4HWOwGKW86oqzoyhdt24nCWnKygBrK1cHqLmi9njaptz6jVFZfp0Wo9Dshe5zT35uQTdkizLj10at9wHUWXhjoVDbnptdHdO7leq9rfdOLmK4h5OdNGdCLEJ2nNcapN6z1Dx1fkKU8Bhc989PzFbPOJtDYY86Rki1CWJp5mP5VHMttwX70mdI6bPwvojaK9OiWrEdOJVO6MQlW2mL3xJT1r2kd0Joc8mMYI3mMgqcwFn5phFh3z6QFZVNPeunijvlSGjus5WV1lj5vREwM9saDbxzi7sGPchVofYoYjeOp7RDmXSl2lpPFM/Ko8HU3pDTZH9EnFQioabG+iioVsirKfV6i8BjTOBo7S/Wms0lH4wRold9Rvk0fHrlXLf4VObtX5dkhzvH4212dixsR1m7gGtGr4VJefVjmwBEvrJ9vkvzaPEvm14Yg21MX1qcGZ9TKjE/+IItg5ecYJrTbX6qj2NvNTq58oTl2hzs7xNDslCxmQ/Qtgf0ppTgb0Y94dUCfobBESspE+dicuvRubrxM755j242LBtxr0fIvIli2Iv6Jrrq6c5iJHDLwPnK3MbaWTDvmCEXHNpHXXa7t590GkvidhzhKmqOfKVeL/Cf1WP2qebKzNCNQwvoFc2jrb+0gpZkEdhbTLN9sg1deU8uNShqdSar3/aZk+rki2RxEXyoO79Rg4j+iZeeEsyUjufK0P76NN2VykPF/RI472hKJ4tvsTuQOj3Ndol9ygNTegWTKBWVCUUYTq68oir/Jt5lWl7kc7/79Q17quag0pBkJncFlDrvx+RNGaKWUCs5rn70taTXatZyu9mvnMaC5OjbX8NbT+DH4rudWzH51hxSrcoDnAFPST1gi3BGs9/HjdqPBSM1PR0s+an56TqpfZcp74mq2bjrFPW1Pp0qx5I7MWqn4eGi8MGi88ddins0atRdWuLNEzZ2zRl6eVvvzacOu3oLxwUnZ7ZAoVe0hpxlJ+VMdOqu4YX6HeOWltOmmFsFrN0wBzzfsg7Wt9dXV/Xe7ugbhJvs2IPDCOX8a0SmPyuVRrc6TGFJDzp9K+mqt/QC3IfUgWFCnzPU5cMXzqNKJyVkr6C7mzpWTntUVQ95Zeyz7Kxg6o/ps15JTWRE7rUiE+pR6RlN+UI1ixSNcNnyOgzH9IPhX7Hc0xs9lbv5Og4k/oeJNXlebFkcKM9O/KvB2uRa+HRvwaUEy4kN71EGi1f8NIgTEqk2D3LHN6Q7jL8UkCe7RDsp/rdopP8WaGRNdJ6qX4vYeN4ahXz3VzbqkRq7H9Enqi1vVbt/Vw80u8Obr4nedEL6RdbSp91OXK8/lohXKXqz436WGxwlfrY0F9zMhCR3lVzEB85s2FJWrHhTE+XNqNoo387SRvIzOfTvlSVr0V5WqmgW3Mc4qXXPdAEWHz7q5avblPHOMYrtEbEtakxi0uSpiNS2V+wLS0mJW6uLYPcevFxt0oMXaiup1CUTd3C22/2UJGZP0S4crZcG9T9kElSnFnYZjCSPCN3rr40KT5GRT8HQhbdKg4+uQOe+Df7ohdsf8ebkO8knXOaAbUgrZgvBJ7h3Kc1R7NOnplUDfp+3Dw5xGDrl3Sx7STtpWdKbslN6n7039NViATkVN63bP9GEwu7pGsc2oznpgsm3s0sVDfxWk7FsXBZyRVLv58+FzDNYoTob7T1G4Mirp7BFUObXioewx+71z3bs/L5NSsr3Uuvjx4F1AnLgqHJ3/1sYru52OhMuONvH8OaB1OGqir3eJ/HYfiozm15+XLLafvmr3weOvcL5IZWfSH268Zzc1nNtdz9OeZlqPT3pKdH/t9Qas3lRqjef/00R/Vc0DxWgrOg7qlY7w5i7S8vlTwXMAmQyr+I/5xwf1thFcljTo52lBS5xT11FQPNzX1jUvb6NRnPjJpOnUyVanpOKJHN2J3xaG4CT+7pQfY9nYof5eS/yLW/v3ZMbSekPVQWXTOHAyoLaLshz5FG9Ozvj9bJzHe5eW7vX1owbPwDrXiPd+71B/v+vYrY6v/Bgmv9TsiFeNKRLJ6uqfX1RBGUD154xyQ+p5vQHfpOYvFN8+mHmeL6v7UqkRL+sR9s2BYix8aUo5ors7lWT2eHOAN+7DMDwXi19QWSjuPe66Lc7eWc3eFc07aqXJ4Y3zWfDerjsuuwWVc5s5OZb+U4mx9ntecG92r5cJ30Jvxkwb8xJCyR9p/SZFwJpqzeYsGmgspk3nCOhMqE8l6wDgzLN93c2R72sDr1GP8t2vRtw1JD0CWIeW/Azphy4heInWzT9LzTcfmTOqtBmnl9yifXd7YWv2/DNYrx9vXtzavb93f3vj8hvx/Dj4UPxU/F1dhjf9WfA7UuuKITr3/Kv4m/r7zeOePO3/a+TN3/eCCxPxYVP7t/OW/q/qpVg==</latexit> <latexit sha1_base64="QtGQyK7T2RsIOekWCYHFOw7OSS4=">AABB13ictVzdctu4FUa2f5v0L9tOr3rD1ptOtpOmtrsz7cxOp+vYjuONkiiR7CS7SjKURCtMKFEhKedH6+ldp7d9hN62D9Hn6Bu0V32Fnh+AACWQAN00GNsghO+cg0Pg4JwDKMN5EufF5uY/L3zwjW9+69vf+fDipe9+7/s/+OHlj350nKeLbBQdjdIkzR4NwzxK4ll0VMRFEj2aZ1E4HSbRw+HLXfz84WmU5XE66xdv59GTaTiZxSfxKCyg6dnln4wXQZGFs3yeZkWQzot4GiZ/eHZ5Y/P6Jv0L1itbsrIh5L9u+lFwJAZiLFIxEgsxFZGYiQLqiQhFDuUrsSU2xRzanogltGVQi+nzSJyJS4BdQK8IeoTQ+hJ+T+DpK9k6g2ekmRN6BFwS+MkAGYgrgEmhXwZ15BbQ5wuijK11tJdEE2V7C3+HktYUWgvxHFpdONXTF4djKcSJ+B2NIYYxzakFRzeSVBakFZQ8MEZVAIU5tGF9DJ9nUB8RUuk5IExOY0fdhvT5v6gntuLzSPZdiH+TlFegBKInR5+WFEJxSvQDepsL+IzlSYDzBChEcoxYe026ntLoZ9B/Ce13oZxRTelkCGVJrWeNyF0oNuSuE3kAxYY8cCI7UGzIjhPZhWJDdiUSsRnp3I7vQbHhe07O96HYkPedyAdQbMgHTuQxFBvy2In8EooN+aUTeROKDXnTibwNxYa87UT2odiQfSfyCIoNeeRE7kOxIfclsn6lZlBSohM7VuUO1Ks80FIk0LLjlO8GWUcb9obHmh7VYN2reg/+2rF7HjqNarD7HvPupAbrnnkHYCPtWLctukW7iQ17y4k9hBlgxx46sV+IFzXYLzxW2ssarHutdaCfHeu2vnfgyY6948TehZod696j7kGLHXvPY8eY12C7Tux98aoG62P1sxqs2+73wK7Yse59qg/97Vgfa7qowbrt6TF4MHase7d6CK127EMn9pF4U4N95MQ+Butuxz722GHf1WDVHnuJdpAJ+SMRrNgmamG5KrE2B2qhg39S7i0J+cZDaHdhJiVmQpipE3FQIg48EZ0S0fGWKy/taE7+rptLr0T0PBHDcm/CWuHsPy77Yy3xQOyViL0VRJNHiu9ajeWUvAvV4kIW5c6FNZ8xpaX9xlok50Oz5VWIexUEz+3nNPOvUbSEERRqqona83KPZ2RAz02I1xS9qVEqHm5cUVoFE/XGiRpaUEMn6q0F9daJWlhQCyfq1II6daL0yjdxA48ZoPWP72JJTzwD2EeuLwF4BTuw69yCNRrA/OmCF/iAWu7B3x7F3q7SJBlG87hPYpbjScUSZ1Bbig1o11HhHsXXCa2wCCTjnvdkjI9PmNtYyjXHVvis3MmDMmPiTycmeSYlHfQWA1pP7ejcppYz8u641g5/q1z3qtYOv08aPyMvnmvt8IWUvjiH7H2J7Z8D24PVNJfa1/W2NDj/wjRU/RLtumhx8a1O5ZxBem9a0j+Ub+bwHO9ll2qsH11vRyM3xpdXxteGhtZzbui5HRX0ntjrVbWg9UhmMu7V9bYypLSLzqQc+qntm8E+Y/lmVL0djS54XLsUcy+NetvZOy9Ho+vtaBwLznuekSev6u1oTOiZ9aHr7WhgtiWUcb6ut7XsqAGOnXW9rVWfURYYc0A857lFe0UZ+UkLSS0m/6A5W2P6/Ov7GOZsnpYxQjMl7dvW0xmWe1mzRMpfiMCqFS3lQP9iYfhgVRpLse2Mr1iGorK/r9PRezxqvgNaDGD18xmAK2eegIQqJ4HWOwGKW86oqzoyhdt24nCWnKygBrK1cHqLmi9njaptz6jVFZfp0Wo9Dshe5zT35uQTdkizLj10at9wHUWXhjoVDbnptdHdO7leq9rfdOLmK4h5OdNGdCLEJ2nNcapN6z1Dx1fkKU8Bhc989PzFbPOJtDYY86Rki1CWJp5mP5VHMttwX70mdI6bPwvojaK9OiWrEdOJVO6MQlW2mL3xJT1r2kd0Joc8mMYI3mMgqcwFn5phFh3z6QFZVNPeunijvlSGjus5WV1lj5vREwM9saDbxzi7sGPchVofYoYjeOp7RDmXSl2lpPFM/Ko8HU3pDTZH9EnFQioabG+iioVsirKfV6i8BjTOBo7S/Wms0lH4wRold9Rvk0fHrlXLf4VObtX5dkhzvH4212dixsR1m7gGtGr4VJefVjmwBEvrJ9vkvzaPEvm14Yg21MX1qcGZ9TKjE/+IItg5ecYJrTbX6qj2NvNTq58oTl2hzs7xNDslCxmQ/Qtgf0ppTgb0Y94dUCfobBESspE+dicuvRubrxM755j242LBtxr0fIvIli2Iv6Jrrq6c5iJHDLwPnK3MbaWTDvmCEXHNpHXXa7t590GkvidhzhKmqOfKVeL/Cf1WP2qebKzNCNQwvoFc2jrb+0gpZkEdhbTLN9sg1deU8uNShqdSar3/aZk+rki2RxEXyoO79Rg4j+iZeeEsyUjufK0P76NN2VykPF/RI472hKJ4tvsTuQOj3Ndol9ygNTegWTKBWVCUUYTq68oir/Jt5lWl7kc7/79Q17quag0pBkJncFlDrvx+RNGaKWUCs5rn70taTXatZyu9mvnMaC5OjbX8NbT+DH4rudWzH51hxSrcoDnAFPST1gi3BGs9/HjdqPBSM1PR0s+an56TqpfZcp74mq2bjrFPW1Pp0qx5I7MWqn4eGi8MGi88ddins0atRdWuLNEzZ2zRl6eVvvzacOu3oLxwUnZ7ZAoVe0hpxlJ+VMdOqu4YX6HeOWltOmmFsFrN0wBzzfsg7Wt9dXV/Xe7ugbhJvs2IPDCOX8a0SmPyuVRrc6TGFJDzp9K+mqt/QC3IfUgWFCnzPU5cMXzqNKJyVkr6C7mzpWTntUVQ95Zeyz7Kxg6o/ps15JTWRE7rUiE+pR6RlN+UI1ixSNcNnyOgzH9IPhX7Hc0xs9lbv5Og4k/oeJNXlebFkcKM9O/KvB2uRa+HRvwaUEy4kN71EGi1f8NIgTEqk2D3LHN6Q7jL8UkCe7RDsp/rdopP8WaGRNdJ6qX4vYeN4ahXz3VzbqkRq7H9Enqi1vVbt/Vw80u8Obr4nedEL6RdbSp91OXK8/lohXKXqz436WGxwlfrY0F9zMhCR3lVzEB85s2FJWrHhTE+XNqNoo387SRvIzOfTvlSVr0V5WqmgW3Mc4qXXPdAEWHz7q5avblPHOMYrtEbEtakxi0uSpiNS2V+wLS0mJW6uLYPcevFxt0oMXaiup1CUTd3C22/2UJGZP0S4crZcG9T9kElSnFnYZjCSPCN3rr40KT5GRT8HQhbdKg4+uQOe+Df7ohdsf8ebkO8knXOaAbUgrZgvBJ7h3Kc1R7NOnplUDfp+3Dw5xGDrl3Sx7STtpWdKbslN6n7039NViATkVN63bP9GEwu7pGsc2oznpgsm3s0sVDfxWk7FsXBZyRVLv58+FzDNYoTob7T1G4Mirp7BFUObXioewx+71z3bs/L5NSsr3Uuvjx4F1AnLgqHJ3/1sYru52OhMuONvH8OaB1OGqir3eJ/HYfiozm15+XLLafvmr3weOvcL5IZWfSH268Zzc1nNtdz9OeZlqPT3pKdH/t9Qas3lRqjef/00R/Vc0DxWgrOg7qlY7w5i7S8vlTwXMAmQyr+I/5xwf1thFcljTo52lBS5xT11FQPNzX1jUvb6NRnPjJpOnUyVanpOKJHN2J3xaG4CT+7pQfY9nYof5eS/yLW/v3ZMbSekPVQWXTOHAyoLaLshz5FG9Ozvj9bJzHe5eW7vX1owbPwDrXiPd+71B/v+vYrY6v/Bgmv9TsiFeNKRLJ6uqfX1RBGUD154xyQ+p5vQHfpOYvFN8+mHmeL6v7UqkRL+sR9s2BYix8aUo5ors7lWT2eHOAN+7DMDwXi19QWSjuPe66Lc7eWc3eFc07aqXJ4Y3zWfDerjsuuwWVc5s5OZb+U4mx9ntecG92r5cJ30Jvxkwb8xJCyR9p/SZFwJpqzeYsGmgspk3nCOhMqE8l6wDgzLN93c2R72sDr1GP8t2vRtw1JD0CWIeW/Azphy4heInWzT9LzTcfmTOqtBmnl9yifXd7YWv2/DNYrx9vXtzavb93f3vj8hvx/Dj4UPxU/F1dhjf9WfA7UuuKITr3/Kv4m/r7zeOePO3/a+TN3/eCCxPxYVP7t/OW/q/qpVg==</latexit> <latexit sha1_base64="QtGQyK7T2RsIOekWCYHFOw7OSS4=">AABB13ictVzdctu4FUa2f5v0L9tOr3rD1ptOtpOmtrsz7cxOp+vYjuONkiiR7CS7SjKURCtMKFEhKedH6+ldp7d9hN62D9Hn6Bu0V32Fnh+AACWQAN00GNsghO+cg0Pg4JwDKMN5EufF5uY/L3zwjW9+69vf+fDipe9+7/s/+OHlj350nKeLbBQdjdIkzR4NwzxK4ll0VMRFEj2aZ1E4HSbRw+HLXfz84WmU5XE66xdv59GTaTiZxSfxKCyg6dnln4wXQZGFs3yeZkWQzot4GiZ/eHZ5Y/P6Jv0L1itbsrIh5L9u+lFwJAZiLFIxEgsxFZGYiQLqiQhFDuUrsSU2xRzanogltGVQi+nzSJyJS4BdQK8IeoTQ+hJ+T+DpK9k6g2ekmRN6BFwS+MkAGYgrgEmhXwZ15BbQ5wuijK11tJdEE2V7C3+HktYUWgvxHFpdONXTF4djKcSJ+B2NIYYxzakFRzeSVBakFZQ8MEZVAIU5tGF9DJ9nUB8RUuk5IExOY0fdhvT5v6gntuLzSPZdiH+TlFegBKInR5+WFEJxSvQDepsL+IzlSYDzBChEcoxYe026ntLoZ9B/Ce13oZxRTelkCGVJrWeNyF0oNuSuE3kAxYY8cCI7UGzIjhPZhWJDdiUSsRnp3I7vQbHhe07O96HYkPedyAdQbMgHTuQxFBvy2In8EooN+aUTeROKDXnTibwNxYa87UT2odiQfSfyCIoNeeRE7kOxIfclsn6lZlBSohM7VuUO1Ks80FIk0LLjlO8GWUcb9obHmh7VYN2reg/+2rF7HjqNarD7HvPupAbrnnkHYCPtWLctukW7iQ17y4k9hBlgxx46sV+IFzXYLzxW2ssarHutdaCfHeu2vnfgyY6948TehZod696j7kGLHXvPY8eY12C7Tux98aoG62P1sxqs2+73wK7Yse59qg/97Vgfa7qowbrt6TF4MHase7d6CK127EMn9pF4U4N95MQ+Butuxz722GHf1WDVHnuJdpAJ+SMRrNgmamG5KrE2B2qhg39S7i0J+cZDaHdhJiVmQpipE3FQIg48EZ0S0fGWKy/taE7+rptLr0T0PBHDcm/CWuHsPy77Yy3xQOyViL0VRJNHiu9ajeWUvAvV4kIW5c6FNZ8xpaX9xlok50Oz5VWIexUEz+3nNPOvUbSEERRqqona83KPZ2RAz02I1xS9qVEqHm5cUVoFE/XGiRpaUEMn6q0F9daJWlhQCyfq1II6daL0yjdxA48ZoPWP72JJTzwD2EeuLwF4BTuw69yCNRrA/OmCF/iAWu7B3x7F3q7SJBlG87hPYpbjScUSZ1Bbig1o11HhHsXXCa2wCCTjnvdkjI9PmNtYyjXHVvis3MmDMmPiTycmeSYlHfQWA1pP7ejcppYz8u641g5/q1z3qtYOv08aPyMvnmvt8IWUvjiH7H2J7Z8D24PVNJfa1/W2NDj/wjRU/RLtumhx8a1O5ZxBem9a0j+Ub+bwHO9ll2qsH11vRyM3xpdXxteGhtZzbui5HRX0ntjrVbWg9UhmMu7V9bYypLSLzqQc+qntm8E+Y/lmVL0djS54XLsUcy+NetvZOy9Ho+vtaBwLznuekSev6u1oTOiZ9aHr7WhgtiWUcb6ut7XsqAGOnXW9rVWfURYYc0A857lFe0UZ+UkLSS0m/6A5W2P6/Ov7GOZsnpYxQjMl7dvW0xmWe1mzRMpfiMCqFS3lQP9iYfhgVRpLse2Mr1iGorK/r9PRezxqvgNaDGD18xmAK2eegIQqJ4HWOwGKW86oqzoyhdt24nCWnKygBrK1cHqLmi9njaptz6jVFZfp0Wo9Dshe5zT35uQTdkizLj10at9wHUWXhjoVDbnptdHdO7leq9rfdOLmK4h5OdNGdCLEJ2nNcapN6z1Dx1fkKU8Bhc989PzFbPOJtDYY86Rki1CWJp5mP5VHMttwX70mdI6bPwvojaK9OiWrEdOJVO6MQlW2mL3xJT1r2kd0Joc8mMYI3mMgqcwFn5phFh3z6QFZVNPeunijvlSGjus5WV1lj5vREwM9saDbxzi7sGPchVofYoYjeOp7RDmXSl2lpPFM/Ko8HU3pDTZH9EnFQioabG+iioVsirKfV6i8BjTOBo7S/Wms0lH4wRold9Rvk0fHrlXLf4VObtX5dkhzvH4212dixsR1m7gGtGr4VJefVjmwBEvrJ9vkvzaPEvm14Yg21MX1qcGZ9TKjE/+IItg5ecYJrTbX6qj2NvNTq58oTl2hzs7xNDslCxmQ/Qtgf0ppTgb0Y94dUCfobBESspE+dicuvRubrxM755j242LBtxr0fIvIli2Iv6Jrrq6c5iJHDLwPnK3MbaWTDvmCEXHNpHXXa7t590GkvidhzhKmqOfKVeL/Cf1WP2qebKzNCNQwvoFc2jrb+0gpZkEdhbTLN9sg1deU8uNShqdSar3/aZk+rki2RxEXyoO79Rg4j+iZeeEsyUjufK0P76NN2VykPF/RI472hKJ4tvsTuQOj3Ndol9ygNTegWTKBWVCUUYTq68oir/Jt5lWl7kc7/79Q17quag0pBkJncFlDrvx+RNGaKWUCs5rn70taTXatZyu9mvnMaC5OjbX8NbT+DH4rudWzH51hxSrcoDnAFPST1gi3BGs9/HjdqPBSM1PR0s+an56TqpfZcp74mq2bjrFPW1Pp0qx5I7MWqn4eGi8MGi88ddins0atRdWuLNEzZ2zRl6eVvvzacOu3oLxwUnZ7ZAoVe0hpxlJ+VMdOqu4YX6HeOWltOmmFsFrN0wBzzfsg7Wt9dXV/Xe7ugbhJvs2IPDCOX8a0SmPyuVRrc6TGFJDzp9K+mqt/QC3IfUgWFCnzPU5cMXzqNKJyVkr6C7mzpWTntUVQ95Zeyz7Kxg6o/ps15JTWRE7rUiE+pR6RlN+UI1ixSNcNnyOgzH9IPhX7Hc0xs9lbv5Og4k/oeJNXlebFkcKM9O/KvB2uRa+HRvwaUEy4kN71EGi1f8NIgTEqk2D3LHN6Q7jL8UkCe7RDsp/rdopP8WaGRNdJ6qX4vYeN4ahXz3VzbqkRq7H9Enqi1vVbt/Vw80u8Obr4nedEL6RdbSp91OXK8/lohXKXqz436WGxwlfrY0F9zMhCR3lVzEB85s2FJWrHhTE+XNqNoo387SRvIzOfTvlSVr0V5WqmgW3Mc4qXXPdAEWHz7q5avblPHOMYrtEbEtakxi0uSpiNS2V+wLS0mJW6uLYPcevFxt0oMXaiup1CUTd3C22/2UJGZP0S4crZcG9T9kElSnFnYZjCSPCN3rr40KT5GRT8HQhbdKg4+uQOe+Df7ohdsf8ebkO8knXOaAbUgrZgvBJ7h3Kc1R7NOnplUDfp+3Dw5xGDrl3Sx7STtpWdKbslN6n7039NViATkVN63bP9GEwu7pGsc2oznpgsm3s0sVDfxWk7FsXBZyRVLv58+FzDNYoTob7T1G4Mirp7BFUObXioewx+71z3bs/L5NSsr3Uuvjx4F1AnLgqHJ3/1sYru52OhMuONvH8OaB1OGqir3eJ/HYfiozm15+XLLafvmr3weOvcL5IZWfSH268Zzc1nNtdz9OeZlqPT3pKdH/t9Qas3lRqjef/00R/Vc0DxWgrOg7qlY7w5i7S8vlTwXMAmQyr+I/5xwf1thFcljTo52lBS5xT11FQPNzX1jUvb6NRnPjJpOnUyVanpOKJHN2J3xaG4CT+7pQfY9nYof5eS/yLW/v3ZMbSekPVQWXTOHAyoLaLshz5FG9Ozvj9bJzHe5eW7vX1owbPwDrXiPd+71B/v+vYrY6v/Bgmv9TsiFeNKRLJ6uqfX1RBGUD154xyQ+p5vQHfpOYvFN8+mHmeL6v7UqkRL+sR9s2BYix8aUo5ors7lWT2eHOAN+7DMDwXi19QWSjuPe66Lc7eWc3eFc07aqXJ4Y3zWfDerjsuuwWVc5s5OZb+U4mx9ntecG92r5cJ30Jvxkwb8xJCyR9p/SZFwJpqzeYsGmgspk3nCOhMqE8l6wDgzLN93c2R72sDr1GP8t2vRtw1JD0CWIeW/Azphy4heInWzT9LzTcfmTOqtBmnl9yifXd7YWv2/DNYrx9vXtzavb93f3vj8hvx/Dj4UPxU/F1dhjf9WfA7UuuKITr3/Kv4m/r7zeOePO3/a+TN3/eCCxPxYVP7t/OW/q/qpVg==</latexit> <latexit sha1_base64="QtGQyK7T2RsIOekWCYHFOw7OSS4=">AABB13ictVzdctu4FUa2f5v0L9tOr3rD1ptOtpOmtrsz7cxOp+vYjuONkiiR7CS7SjKURCtMKFEhKedH6+ldp7d9hN62D9Hn6Bu0V32Fnh+AACWQAN00GNsghO+cg0Pg4JwDKMN5EufF5uY/L3zwjW9+69vf+fDipe9+7/s/+OHlj350nKeLbBQdjdIkzR4NwzxK4ll0VMRFEj2aZ1E4HSbRw+HLXfz84WmU5XE66xdv59GTaTiZxSfxKCyg6dnln4wXQZGFs3yeZkWQzot4GiZ/eHZ5Y/P6Jv0L1itbsrIh5L9u+lFwJAZiLFIxEgsxFZGYiQLqiQhFDuUrsSU2xRzanogltGVQi+nzSJyJS4BdQK8IeoTQ+hJ+T+DpK9k6g2ekmRN6BFwS+MkAGYgrgEmhXwZ15BbQ5wuijK11tJdEE2V7C3+HktYUWgvxHFpdONXTF4djKcSJ+B2NIYYxzakFRzeSVBakFZQ8MEZVAIU5tGF9DJ9nUB8RUuk5IExOY0fdhvT5v6gntuLzSPZdiH+TlFegBKInR5+WFEJxSvQDepsL+IzlSYDzBChEcoxYe026ntLoZ9B/Ce13oZxRTelkCGVJrWeNyF0oNuSuE3kAxYY8cCI7UGzIjhPZhWJDdiUSsRnp3I7vQbHhe07O96HYkPedyAdQbMgHTuQxFBvy2In8EooN+aUTeROKDXnTibwNxYa87UT2odiQfSfyCIoNeeRE7kOxIfclsn6lZlBSohM7VuUO1Ks80FIk0LLjlO8GWUcb9obHmh7VYN2reg/+2rF7HjqNarD7HvPupAbrnnkHYCPtWLctukW7iQ17y4k9hBlgxx46sV+IFzXYLzxW2ssarHutdaCfHeu2vnfgyY6948TehZod696j7kGLHXvPY8eY12C7Tux98aoG62P1sxqs2+73wK7Yse59qg/97Vgfa7qowbrt6TF4MHase7d6CK127EMn9pF4U4N95MQ+Butuxz722GHf1WDVHnuJdpAJ+SMRrNgmamG5KrE2B2qhg39S7i0J+cZDaHdhJiVmQpipE3FQIg48EZ0S0fGWKy/taE7+rptLr0T0PBHDcm/CWuHsPy77Yy3xQOyViL0VRJNHiu9ajeWUvAvV4kIW5c6FNZ8xpaX9xlok50Oz5VWIexUEz+3nNPOvUbSEERRqqona83KPZ2RAz02I1xS9qVEqHm5cUVoFE/XGiRpaUEMn6q0F9daJWlhQCyfq1II6daL0yjdxA48ZoPWP72JJTzwD2EeuLwF4BTuw69yCNRrA/OmCF/iAWu7B3x7F3q7SJBlG87hPYpbjScUSZ1Bbig1o11HhHsXXCa2wCCTjnvdkjI9PmNtYyjXHVvis3MmDMmPiTycmeSYlHfQWA1pP7ejcppYz8u641g5/q1z3qtYOv08aPyMvnmvt8IWUvjiH7H2J7Z8D24PVNJfa1/W2NDj/wjRU/RLtumhx8a1O5ZxBem9a0j+Ub+bwHO9ll2qsH11vRyM3xpdXxteGhtZzbui5HRX0ntjrVbWg9UhmMu7V9bYypLSLzqQc+qntm8E+Y/lmVL0djS54XLsUcy+NetvZOy9Ho+vtaBwLznuekSev6u1oTOiZ9aHr7WhgtiWUcb6ut7XsqAGOnXW9rVWfURYYc0A857lFe0UZ+UkLSS0m/6A5W2P6/Ov7GOZsnpYxQjMl7dvW0xmWe1mzRMpfiMCqFS3lQP9iYfhgVRpLse2Mr1iGorK/r9PRezxqvgNaDGD18xmAK2eegIQqJ4HWOwGKW86oqzoyhdt24nCWnKygBrK1cHqLmi9njaptz6jVFZfp0Wo9Dshe5zT35uQTdkizLj10at9wHUWXhjoVDbnptdHdO7leq9rfdOLmK4h5OdNGdCLEJ2nNcapN6z1Dx1fkKU8Bhc989PzFbPOJtDYY86Rki1CWJp5mP5VHMttwX70mdI6bPwvojaK9OiWrEdOJVO6MQlW2mL3xJT1r2kd0Joc8mMYI3mMgqcwFn5phFh3z6QFZVNPeunijvlSGjus5WV1lj5vREwM9saDbxzi7sGPchVofYoYjeOp7RDmXSl2lpPFM/Ko8HU3pDTZH9EnFQioabG+iioVsirKfV6i8BjTOBo7S/Wms0lH4wRold9Rvk0fHrlXLf4VObtX5dkhzvH4212dixsR1m7gGtGr4VJefVjmwBEvrJ9vkvzaPEvm14Yg21MX1qcGZ9TKjE/+IItg5ecYJrTbX6qj2NvNTq58oTl2hzs7xNDslCxmQ/Qtgf0ppTgb0Y94dUCfobBESspE+dicuvRubrxM755j242LBtxr0fIvIli2Iv6Jrrq6c5iJHDLwPnK3MbaWTDvmCEXHNpHXXa7t590GkvidhzhKmqOfKVeL/Cf1WP2qebKzNCNQwvoFc2jrb+0gpZkEdhbTLN9sg1deU8uNShqdSar3/aZk+rki2RxEXyoO79Rg4j+iZeeEsyUjufK0P76NN2VykPF/RI472hKJ4tvsTuQOj3Ndol9ygNTegWTKBWVCUUYTq68oir/Jt5lWl7kc7/79Q17quag0pBkJncFlDrvx+RNGaKWUCs5rn70taTXatZyu9mvnMaC5OjbX8NbT+DH4rudWzH51hxSrcoDnAFPST1gi3BGs9/HjdqPBSM1PR0s+an56TqpfZcp74mq2bjrFPW1Pp0qx5I7MWqn4eGi8MGi88ddins0atRdWuLNEzZ2zRl6eVvvzacOu3oLxwUnZ7ZAoVe0hpxlJ+VMdOqu4YX6HeOWltOmmFsFrN0wBzzfsg7Wt9dXV/Xe7ugbhJvs2IPDCOX8a0SmPyuVRrc6TGFJDzp9K+mqt/QC3IfUgWFCnzPU5cMXzqNKJyVkr6C7mzpWTntUVQ95Zeyz7Kxg6o/ps15JTWRE7rUiE+pR6RlN+UI1ixSNcNnyOgzH9IPhX7Hc0xs9lbv5Og4k/oeJNXlebFkcKM9O/KvB2uRa+HRvwaUEy4kN71EGi1f8NIgTEqk2D3LHN6Q7jL8UkCe7RDsp/rdopP8WaGRNdJ6qX4vYeN4ahXz3VzbqkRq7H9Enqi1vVbt/Vw80u8Obr4nedEL6RdbSp91OXK8/lohXKXqz436WGxwlfrY0F9zMhCR3lVzEB85s2FJWrHhTE+XNqNoo387SRvIzOfTvlSVr0V5WqmgW3Mc4qXXPdAEWHz7q5avblPHOMYrtEbEtakxi0uSpiNS2V+wLS0mJW6uLYPcevFxt0oMXaiup1CUTd3C22/2UJGZP0S4crZcG9T9kElSnFnYZjCSPCN3rr40KT5GRT8HQhbdKg4+uQOe+Df7ohdsf8ebkO8knXOaAbUgrZgvBJ7h3Kc1R7NOnplUDfp+3Dw5xGDrl3Sx7STtpWdKbslN6n7039NViATkVN63bP9GEwu7pGsc2oznpgsm3s0sVDfxWk7FsXBZyRVLv58+FzDNYoTob7T1G4Mirp7BFUObXioewx+71z3bs/L5NSsr3Uuvjx4F1AnLgqHJ3/1sYru52OhMuONvH8OaB1OGqir3eJ/HYfiozm15+XLLafvmr3weOvcL5IZWfSH268Zzc1nNtdz9OeZlqPT3pKdH/t9Qas3lRqjef/00R/Vc0DxWgrOg7qlY7w5i7S8vlTwXMAmQyr+I/5xwf1thFcljTo52lBS5xT11FQPNzX1jUvb6NRnPjJpOnUyVanpOKJHN2J3xaG4CT+7pQfY9nYof5eS/yLW/v3ZMbSekPVQWXTOHAyoLaLshz5FG9Ozvj9bJzHe5eW7vX1owbPwDrXiPd+71B/v+vYrY6v/Bgmv9TsiFeNKRLJ6uqfX1RBGUD154xyQ+p5vQHfpOYvFN8+mHmeL6v7UqkRL+sR9s2BYix8aUo5ors7lWT2eHOAN+7DMDwXi19QWSjuPe66Lc7eWc3eFc07aqXJ4Y3zWfDerjsuuwWVc5s5OZb+U4mx9ntecG92r5cJ30Jvxkwb8xJCyR9p/SZFwJpqzeYsGmgspk3nCOhMqE8l6wDgzLN93c2R72sDr1GP8t2vRtw1JD0CWIeW/Azphy4heInWzT9LzTcfmTOqtBmnl9yifXd7YWv2/DNYrx9vXtzavb93f3vj8hvx/Dj4UPxU/F1dhjf9WfA7UuuKITr3/Kv4m/r7zeOePO3/a+TN3/eCCxPxYVP7t/OW/q/qpVg==</latexit>
est la r´ egularit´ e <latexit sha1_base64="xtJlWHp4E1PWMU9pCMI1LHPPgQI=">AABB9HictVxLcxu5EYY3r7Xz8ianVC6TaJ3ybjmKrGxVUrWVqpUlWdaatmWTkr27tF18jGjaJIeeIekHV/8jh9xSueYnJMfkL+QfZE/5C+kHMMCQmGmM4hglCQPi6240gEZ3Y+judDTMZltb/7rw3re+/Z3vfu/9i5e+/4Mf/ujHlz/4yUmWzNNefNxLRkn6qNvJ4tFwEh/PhrNR/Giaxp1xdxQ/7L7Yxc8fLuI0GyaT1uzNNH487gwmw9NhrzODpuTyz9R9NVexGkGJVQQ/mZrB35HqwO9UfaMG8Dk+pWoIn3yjoqeXN7Y2t+hftF65risbSv87Sj6IjlVb9VWiekBrDDwmQKlHVDMoX6nraktNoe2xWhKnGfDqkURn6hJg59Arhh4daH0Bvwfw9JVuncDzmORGdA+4jOAnBWSkrgAmgX5pPqIePSNlbC2jvSSaKNsb+NvVtMbQOlPPoFXCmZ6hOBzLTJ2q39MYhjCmKbXg6Hqaypy0wrNkRzUDClNow3ofPk+h3iOk0XNEmIzGjrrt0Of/pp7Yis893XcO84tSXoESqaYefZJT6KgF0Y9oNufwGcszAs4DoBDrMWLtFel6TKOfQP8ltN+FckY1o5MulCW1nlUid6H4kLsi8gCKD3kgIhtQfMiGiDyC4kMeaSRiU9K5H9+E4sM3Rc73ofiQ90XkAyg+5AMReQLFhzwRkV9C8SG/FJE3ofiQN0XkbSg+5G0R2YLiQ7ZE5DEUH/JYRO5D8SH3NbJ8p6ZQEqIzFHblDtSLPNBSjKBlR5TvBllHH/ZGwJ7ulWDlXb0Hf/3YvQCdxiXY/YB1d1qClVfeAdhIP1a2RbfoNPFhb4nYQ1gBfuyhiP1cPS/Bfh6w016UYOW91oB+fqxsfe/Akx97R8TehZofK59R96DFj70XcGJMS7BHIva+elmCDbH6aQlWtvtNsCt+rHxOtaC/HxtiTeclWNmenoAH48fKp9VDaPVjH4rYR+p1CfaRiP0CrLsf+0XACfu2BGvO2Et0ggzIH4lhx1ZR6+S7EmtToNYR+I/ys2VEvnEX2iXMIMcMCDMWEQc54iAQ0cgRjWC5styOZuTvylyaOaIZiOjmZxPWZmL/ft6/T1GcjNjLEXsriCqPFOfajGVB3oVpkZCz/OTCWsiYktx+Yy3W66Ha8hrEvQKC1/YzWvnXKFrCCAo1VUXtWX7GMzKi5yrEK4rezCgNDxk3y62Ci3otoroeVFdEvfGg3oiouQc1F1ELD2ohouzOd3HtgBVg9Y9zsaQnXgHsI5eXCLyCHTh1bsEejWD9HIEX+IBa7sHfJsXeUqmSDKN5PCcxy/G4YIlTqC3VBrTbqHCP4mvOt8QgGfe8p2N8fMLcxlLvObbCZ/lJHuUZk3A6Q5JnkNNBbzGi/VSPzm1qOSPvjmv18LfyfW9q9fD7pPEz8uK5Vg8/09LPziF7S2Nb58A2YTdNtfZtvS4Nzr8wDVO/RKcuWlyc1bFeM0jvdU36h3pmDs8xL7tUY/3Yej0amTO+rDC+OjSsnjNHz/WooPfEXq+pRbVHMtFxr63XlSGhU3Si5bBPdWcG+/T1zJh6PRpH4HHtUsy9dOp1V+80H42t16NxojjveUaevKnXozGgZ9aHrdejgdmWjo7zbb2uZUcNcOxs63Wt+oSywJgD4jXPLdYrSslPcnP7b4Rsjevzr59jmLN5kscI1ZSsb1tOp5ufZdUSGX8hBqs2qykH+hdzxwcr0liqbTG+YhlmhfN9nY4941HzDdBiBLuf7wCknPkIJDQ5Cb6neULUqjHFkRnctojDVXK6gmrr1pnoLVq+nDUqtj2lVikus6O1emyTvc5o7U3JJ2yQZiU9NEpnuIyipKFGQUMyvTq6e6v3a1H7WyJuuoKY5iutRzdCfJNWHaf6tN50dHxF3/LMoPCdj12/mG0+1dYGY56EbBHKUsXT7WfySG4bnqvXlM1x82cRzSjaqwVZjSHdSGViFGqyxeyNL+nZ0j6mOznkwTR6MI+RpjJVfGuGWXTMp0dkUV17K/FGfZkMHdczsrrGHlejBw564EHXj3F24cS4C7UWxAzH8NQKiHIu5bpKSOOp+nV+O5rQDFZH9KOChTQ02N7EBQtZFWU/K1B5BWhcDRylh9NYpWPw7TVKctTvk8fGrkXLf4Vubs39dofWePlqLs/E9InrNnGNaNfwrS4/rXJgCZbeT7bJf60eJfKrwxFtqMT1icOZ9TKhG39+A2FKnvGIdpu0O4q93fzU6ieG05Eyd+d4m52QhYzI/kVwPiW0JiP6cd8dMDfobBFGZCND7M4w9258vs5QXGPWjxsqfqvBrreYbNmc+Bu67u7KaC1yxMDnwNnK2jY6aZAvGBPXVFt3u7erTx9E2vck3FXCFO1auUr8P6Lf5sesk421FYEaxhnItK3zzUdCMQvqqEOnfLUNMn1dKT/MZXiipbbnn5Xpw4JkexRxoTx4WveBc4+emReukpTkztb68Dlalc1FytMVPeJoTymKZ7s/0Ccwyn2NTskN2nNtWiUDWAWzPIowfaUs8irfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXClHsKp5/b6g3eTXerrSq5rPhNbi2NnLX0PrL+C3kds8h9HpFqzCDVoDTME+WY1wS7TWI4zXjQIvszINLfts+dk1aXq5LeeJr9m62Rh7UZvKEa2a1zprYernofHcofE8UIctumu0WjTtxhI9FWOLlr6tDOVXh1urBuW5SFn2yAxqGCClG0uFUe2LVOUY36DeirS2RFod2K3ubYC750OQ/r2+uru/zk/3SN0k36ZHHhjHL33apUPyuUxrdaTGFJDzJ9q+uru/TS3IvUsWFCnze5y4Y/jWqUflLJf0V/pkS8jOW4tg3lt6pfsYG9um+m/XkGPaExntS4P4hHrEWn5XjmjFIm06PkdEmf8O+VTsd1THzG5vOydRwZ+w8SbvKsuLI4UJ6V/KvB2uRa+HTvwaUUw41951F2jVn2GkwBiTSfB7lhnNEJ5yfJPAHm2X7Oe6neJbvIkj0SZJvVR/CLAxHPXate6uLTNiM7aPoSdq3c66r4fMbxTMUeJ3nhu9Dp1qY+2jLleez0ero0+54nOVHuYrfK0+5tTHjSxslFfEtNWnwVxYonpcGBPCpd4o6shfT/I6MvPtVChl09tQLmYa2MY8o3hJeg8UET7v7qrXm/tIGEd3jV6XsC41bpEoYTYu0fkB19JiVuri2jnErRcrT6ORcxKVnRSGuntaWPvNFjIm6zdSUs6Ge7uytwtRipyFYQo9xW/0lsWHLs1PoeDvSPmiQ8MxJHfYBP92R+2q/XfwNsRLXeeMZkQtaAv6K7F3R4+z2KNaRy8d6i79EA7hPIaga0n6IZ2kdWVnyrLkLvVw+q/ICqQqFqW3PeuPweUij2SdU53xDMmyyaMZKvNdnLpjMRxCRlLkEs6H7zWkUZwq852memMw1OURFDnU4WHeYwibc9u7Pi+XU7W+1rmE8uBTwNy4GBze/JXHKrZfiIVKnRl59xzQOpxWUDenxf86DsPHcqrPK5RbRt81ex4w69wv1hlZ9Ifr7xnLLWQ1l3MM55nko7Pekp8f+31RrZlKnNG8e/roj9o1YHgtFedBZekY764iK28oFbwX8MmQqP+ov1+Qv43wMqdRJkcdSuaeopya6SFTM9+49I3OfBYik6VTJlORmo0jmvRG7K46VDfhZzf3AOu+HcrfpeS/iPV/f7YPradkPUwWnTMHbWqLKfthb9H69Gzfny2TGN/l5Xd7W9CCd+ENasX3fO9Sf3zXt1UYW/k3SHiv31GJ6hciktXbPbuvujCC4s0b54DM93wjepees1j85tk44G7RvD+1KtGSPpHfLOiW4ruOlD1aq1N9V483B/iGfSfPD0XqN9TW0XYez1yJ81Ep56MVzvxt9CKH185n1e9mlXHZdbj089zZQvdLKM6293nVudG9Ui78Dno1flCBHzhSNkn7LygSTlV1Nm9eQXOuZXJvWCfKZCJZDxhndvL5ro5sFxW8FgHjv12Kvu1IegCydCn/HdENW0r0Rlo3+yQ9v+lYnUm9VSGt/h7l08sb11f/L4P1ysn25vWtzev3tzc+u6H/n4P31c/VL9VV2OO/U58BtSN1DBz+qP6m/qH+ubPY+dPOn3f+wl3fu6AxP1WFfzt//S+s/Kxx</latexit> <latexit sha1_base64="xtJlWHp4E1PWMU9pCMI1LHPPgQI=">AABB9HictVxLcxu5EYY3r7Xz8ianVC6TaJ3ybjmKrGxVUrWVqpUlWdaatmWTkr27tF18jGjaJIeeIekHV/8jh9xSueYnJMfkL+QfZE/5C+kHMMCQmGmM4hglCQPi6240gEZ3Y+judDTMZltb/7rw3re+/Z3vfu/9i5e+/4Mf/ujHlz/4yUmWzNNefNxLRkn6qNvJ4tFwEh/PhrNR/Giaxp1xdxQ/7L7Yxc8fLuI0GyaT1uzNNH487gwmw9NhrzODpuTyz9R9NVexGkGJVQQ/mZrB35HqwO9UfaMG8Dk+pWoIn3yjoqeXN7Y2t+hftF65risbSv87Sj6IjlVb9VWiekBrDDwmQKlHVDMoX6nraktNoe2xWhKnGfDqkURn6hJg59Arhh4daH0Bvwfw9JVuncDzmORGdA+4jOAnBWSkrgAmgX5pPqIePSNlbC2jvSSaKNsb+NvVtMbQOlPPoFXCmZ6hOBzLTJ2q39MYhjCmKbXg6Hqaypy0wrNkRzUDClNow3ofPk+h3iOk0XNEmIzGjrrt0Of/pp7Yis893XcO84tSXoESqaYefZJT6KgF0Y9oNufwGcszAs4DoBDrMWLtFel6TKOfQP8ltN+FckY1o5MulCW1nlUid6H4kLsi8gCKD3kgIhtQfMiGiDyC4kMeaSRiU9K5H9+E4sM3Rc73ofiQ90XkAyg+5AMReQLFhzwRkV9C8SG/FJE3ofiQN0XkbSg+5G0R2YLiQ7ZE5DEUH/JYRO5D8SH3NbJ8p6ZQEqIzFHblDtSLPNBSjKBlR5TvBllHH/ZGwJ7ulWDlXb0Hf/3YvQCdxiXY/YB1d1qClVfeAdhIP1a2RbfoNPFhb4nYQ1gBfuyhiP1cPS/Bfh6w016UYOW91oB+fqxsfe/Akx97R8TehZofK59R96DFj70XcGJMS7BHIva+elmCDbH6aQlWtvtNsCt+rHxOtaC/HxtiTeclWNmenoAH48fKp9VDaPVjH4rYR+p1CfaRiP0CrLsf+0XACfu2BGvO2Et0ggzIH4lhx1ZR6+S7EmtToNYR+I/ys2VEvnEX2iXMIMcMCDMWEQc54iAQ0cgRjWC5styOZuTvylyaOaIZiOjmZxPWZmL/ft6/T1GcjNjLEXsriCqPFOfajGVB3oVpkZCz/OTCWsiYktx+Yy3W66Ha8hrEvQKC1/YzWvnXKFrCCAo1VUXtWX7GMzKi5yrEK4rezCgNDxk3y62Ci3otoroeVFdEvfGg3oiouQc1F1ELD2ohouzOd3HtgBVg9Y9zsaQnXgHsI5eXCLyCHTh1bsEejWD9HIEX+IBa7sHfJsXeUqmSDKN5PCcxy/G4YIlTqC3VBrTbqHCP4mvOt8QgGfe8p2N8fMLcxlLvObbCZ/lJHuUZk3A6Q5JnkNNBbzGi/VSPzm1qOSPvjmv18LfyfW9q9fD7pPEz8uK5Vg8/09LPziF7S2Nb58A2YTdNtfZtvS4Nzr8wDVO/RKcuWlyc1bFeM0jvdU36h3pmDs8xL7tUY/3Yej0amTO+rDC+OjSsnjNHz/WooPfEXq+pRbVHMtFxr63XlSGhU3Si5bBPdWcG+/T1zJh6PRpH4HHtUsy9dOp1V+80H42t16NxojjveUaevKnXozGgZ9aHrdejgdmWjo7zbb2uZUcNcOxs63Wt+oSywJgD4jXPLdYrSslPcnP7b4Rsjevzr59jmLN5kscI1ZSsb1tOp5ufZdUSGX8hBqs2qykH+hdzxwcr0liqbTG+YhlmhfN9nY4941HzDdBiBLuf7wCknPkIJDQ5Cb6neULUqjHFkRnctojDVXK6gmrr1pnoLVq+nDUqtj2lVikus6O1emyTvc5o7U3JJ2yQZiU9NEpnuIyipKFGQUMyvTq6e6v3a1H7WyJuuoKY5iutRzdCfJNWHaf6tN50dHxF3/LMoPCdj12/mG0+1dYGY56EbBHKUsXT7WfySG4bnqvXlM1x82cRzSjaqwVZjSHdSGViFGqyxeyNL+nZ0j6mOznkwTR6MI+RpjJVfGuGWXTMp0dkUV17K/FGfZkMHdczsrrGHlejBw564EHXj3F24cS4C7UWxAzH8NQKiHIu5bpKSOOp+nV+O5rQDFZH9KOChTQ02N7EBQtZFWU/K1B5BWhcDRylh9NYpWPw7TVKctTvk8fGrkXLf4Vubs39dofWePlqLs/E9InrNnGNaNfwrS4/rXJgCZbeT7bJf60eJfKrwxFtqMT1icOZ9TKhG39+A2FKnvGIdpu0O4q93fzU6ieG05Eyd+d4m52QhYzI/kVwPiW0JiP6cd8dMDfobBFGZCND7M4w9258vs5QXGPWjxsqfqvBrreYbNmc+Bu67u7KaC1yxMDnwNnK2jY6aZAvGBPXVFt3u7erTx9E2vck3FXCFO1auUr8P6Lf5sesk421FYEaxhnItK3zzUdCMQvqqEOnfLUNMn1dKT/MZXiipbbnn5Xpw4JkexRxoTx4WveBc4+emReukpTkztb68Dlalc1FytMVPeJoTymKZ7s/0Ccwyn2NTskN2nNtWiUDWAWzPIowfaUs8irfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXClHsKp5/b6g3eTXerrSq5rPhNbi2NnLX0PrL+C3kds8h9HpFqzCDVoDTME+WY1wS7TWI4zXjQIvszINLfts+dk1aXq5LeeJr9m62Rh7UZvKEa2a1zprYernofHcofE8UIctumu0WjTtxhI9FWOLlr6tDOVXh1urBuW5SFn2yAxqGCClG0uFUe2LVOUY36DeirS2RFod2K3ubYC750OQ/r2+uru/zk/3SN0k36ZHHhjHL33apUPyuUxrdaTGFJDzJ9q+uru/TS3IvUsWFCnze5y4Y/jWqUflLJf0V/pkS8jOW4tg3lt6pfsYG9um+m/XkGPaExntS4P4hHrEWn5XjmjFIm06PkdEmf8O+VTsd1THzG5vOydRwZ+w8SbvKsuLI4UJ6V/KvB2uRa+HTvwaUUw41951F2jVn2GkwBiTSfB7lhnNEJ5yfJPAHm2X7Oe6neJbvIkj0SZJvVR/CLAxHPXate6uLTNiM7aPoSdq3c66r4fMbxTMUeJ3nhu9Dp1qY+2jLleez0ero0+54nOVHuYrfK0+5tTHjSxslFfEtNWnwVxYonpcGBPCpd4o6shfT/I6MvPtVChl09tQLmYa2MY8o3hJeg8UET7v7qrXm/tIGEd3jV6XsC41bpEoYTYu0fkB19JiVuri2jnErRcrT6ORcxKVnRSGuntaWPvNFjIm6zdSUs6Ge7uytwtRipyFYQo9xW/0lsWHLs1PoeDvSPmiQ8MxJHfYBP92R+2q/XfwNsRLXeeMZkQtaAv6K7F3R4+z2KNaRy8d6i79EA7hPIaga0n6IZ2kdWVnyrLkLvVw+q/ICqQqFqW3PeuPweUij2SdU53xDMmyyaMZKvNdnLpjMRxCRlLkEs6H7zWkUZwq852memMw1OURFDnU4WHeYwibc9u7Pi+XU7W+1rmE8uBTwNy4GBze/JXHKrZfiIVKnRl59xzQOpxWUDenxf86DsPHcqrPK5RbRt81ex4w69wv1hlZ9Ifr7xnLLWQ1l3MM55nko7Pekp8f+31RrZlKnNG8e/roj9o1YHgtFedBZekY764iK28oFbwX8MmQqP+ov1+Qv43wMqdRJkcdSuaeopya6SFTM9+49I3OfBYik6VTJlORmo0jmvRG7K46VDfhZzf3AOu+HcrfpeS/iPV/f7YPradkPUwWnTMHbWqLKfthb9H69Gzfny2TGN/l5Xd7W9CCd+ENasX3fO9Sf3zXt1UYW/k3SHiv31GJ6hciktXbPbuvujCC4s0b54DM93wjepees1j85tk44G7RvD+1KtGSPpHfLOiW4ruOlD1aq1N9V483B/iGfSfPD0XqN9TW0XYez1yJ81Ep56MVzvxt9CKH185n1e9mlXHZdbj089zZQvdLKM6293nVudG9Ui78Dno1flCBHzhSNkn7LygSTlV1Nm9eQXOuZXJvWCfKZCJZDxhndvL5ro5sFxW8FgHjv12Kvu1IegCydCn/HdENW0r0Rlo3+yQ9v+lYnUm9VSGt/h7l08sb11f/L4P1ysn25vWtzev3tzc+u6H/n4P31c/VL9VV2OO/U58BtSN1DBz+qP6m/qH+ubPY+dPOn3f+wl3fu6AxP1WFfzt//S+s/Kxx</latexit> <latexit sha1_base64="xtJlWHp4E1PWMU9pCMI1LHPPgQI=">AABB9HictVxLcxu5EYY3r7Xz8ianVC6TaJ3ybjmKrGxVUrWVqpUlWdaatmWTkr27tF18jGjaJIeeIekHV/8jh9xSueYnJMfkL+QfZE/5C+kHMMCQmGmM4hglCQPi6240gEZ3Y+judDTMZltb/7rw3re+/Z3vfu/9i5e+/4Mf/ujHlz/4yUmWzNNefNxLRkn6qNvJ4tFwEh/PhrNR/Giaxp1xdxQ/7L7Yxc8fLuI0GyaT1uzNNH487gwmw9NhrzODpuTyz9R9NVexGkGJVQQ/mZrB35HqwO9UfaMG8Dk+pWoIn3yjoqeXN7Y2t+hftF65risbSv87Sj6IjlVb9VWiekBrDDwmQKlHVDMoX6nraktNoe2xWhKnGfDqkURn6hJg59Arhh4daH0Bvwfw9JVuncDzmORGdA+4jOAnBWSkrgAmgX5pPqIePSNlbC2jvSSaKNsb+NvVtMbQOlPPoFXCmZ6hOBzLTJ2q39MYhjCmKbXg6Hqaypy0wrNkRzUDClNow3ofPk+h3iOk0XNEmIzGjrrt0Of/pp7Yis893XcO84tSXoESqaYefZJT6KgF0Y9oNufwGcszAs4DoBDrMWLtFel6TKOfQP8ltN+FckY1o5MulCW1nlUid6H4kLsi8gCKD3kgIhtQfMiGiDyC4kMeaSRiU9K5H9+E4sM3Rc73ofiQ90XkAyg+5AMReQLFhzwRkV9C8SG/FJE3ofiQN0XkbSg+5G0R2YLiQ7ZE5DEUH/JYRO5D8SH3NbJ8p6ZQEqIzFHblDtSLPNBSjKBlR5TvBllHH/ZGwJ7ulWDlXb0Hf/3YvQCdxiXY/YB1d1qClVfeAdhIP1a2RbfoNPFhb4nYQ1gBfuyhiP1cPS/Bfh6w016UYOW91oB+fqxsfe/Akx97R8TehZofK59R96DFj70XcGJMS7BHIva+elmCDbH6aQlWtvtNsCt+rHxOtaC/HxtiTeclWNmenoAH48fKp9VDaPVjH4rYR+p1CfaRiP0CrLsf+0XACfu2BGvO2Et0ggzIH4lhx1ZR6+S7EmtToNYR+I/ys2VEvnEX2iXMIMcMCDMWEQc54iAQ0cgRjWC5styOZuTvylyaOaIZiOjmZxPWZmL/ft6/T1GcjNjLEXsriCqPFOfajGVB3oVpkZCz/OTCWsiYktx+Yy3W66Ha8hrEvQKC1/YzWvnXKFrCCAo1VUXtWX7GMzKi5yrEK4rezCgNDxk3y62Ci3otoroeVFdEvfGg3oiouQc1F1ELD2ohouzOd3HtgBVg9Y9zsaQnXgHsI5eXCLyCHTh1bsEejWD9HIEX+IBa7sHfJsXeUqmSDKN5PCcxy/G4YIlTqC3VBrTbqHCP4mvOt8QgGfe8p2N8fMLcxlLvObbCZ/lJHuUZk3A6Q5JnkNNBbzGi/VSPzm1qOSPvjmv18LfyfW9q9fD7pPEz8uK5Vg8/09LPziF7S2Nb58A2YTdNtfZtvS4Nzr8wDVO/RKcuWlyc1bFeM0jvdU36h3pmDs8xL7tUY/3Yej0amTO+rDC+OjSsnjNHz/WooPfEXq+pRbVHMtFxr63XlSGhU3Si5bBPdWcG+/T1zJh6PRpH4HHtUsy9dOp1V+80H42t16NxojjveUaevKnXozGgZ9aHrdejgdmWjo7zbb2uZUcNcOxs63Wt+oSywJgD4jXPLdYrSslPcnP7b4Rsjevzr59jmLN5kscI1ZSsb1tOp5ufZdUSGX8hBqs2qykH+hdzxwcr0liqbTG+YhlmhfN9nY4941HzDdBiBLuf7wCknPkIJDQ5Cb6neULUqjHFkRnctojDVXK6gmrr1pnoLVq+nDUqtj2lVikus6O1emyTvc5o7U3JJ2yQZiU9NEpnuIyipKFGQUMyvTq6e6v3a1H7WyJuuoKY5iutRzdCfJNWHaf6tN50dHxF3/LMoPCdj12/mG0+1dYGY56EbBHKUsXT7WfySG4bnqvXlM1x82cRzSjaqwVZjSHdSGViFGqyxeyNL+nZ0j6mOznkwTR6MI+RpjJVfGuGWXTMp0dkUV17K/FGfZkMHdczsrrGHlejBw564EHXj3F24cS4C7UWxAzH8NQKiHIu5bpKSOOp+nV+O5rQDFZH9KOChTQ02N7EBQtZFWU/K1B5BWhcDRylh9NYpWPw7TVKctTvk8fGrkXLf4Vubs39dofWePlqLs/E9InrNnGNaNfwrS4/rXJgCZbeT7bJf60eJfKrwxFtqMT1icOZ9TKhG39+A2FKnvGIdpu0O4q93fzU6ieG05Eyd+d4m52QhYzI/kVwPiW0JiP6cd8dMDfobBFGZCND7M4w9258vs5QXGPWjxsqfqvBrreYbNmc+Bu67u7KaC1yxMDnwNnK2jY6aZAvGBPXVFt3u7erTx9E2vck3FXCFO1auUr8P6Lf5sesk421FYEaxhnItK3zzUdCMQvqqEOnfLUNMn1dKT/MZXiipbbnn5Xpw4JkexRxoTx4WveBc4+emReukpTkztb68Dlalc1FytMVPeJoTymKZ7s/0Ccwyn2NTskN2nNtWiUDWAWzPIowfaUs8irfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXClHsKp5/b6g3eTXerrSq5rPhNbi2NnLX0PrL+C3kds8h9HpFqzCDVoDTME+WY1wS7TWI4zXjQIvszINLfts+dk1aXq5LeeJr9m62Rh7UZvKEa2a1zprYernofHcofE8UIctumu0WjTtxhI9FWOLlr6tDOVXh1urBuW5SFn2yAxqGCClG0uFUe2LVOUY36DeirS2RFod2K3ubYC750OQ/r2+uru/zk/3SN0k36ZHHhjHL33apUPyuUxrdaTGFJDzJ9q+uru/TS3IvUsWFCnze5y4Y/jWqUflLJf0V/pkS8jOW4tg3lt6pfsYG9um+m/XkGPaExntS4P4hHrEWn5XjmjFIm06PkdEmf8O+VTsd1THzG5vOydRwZ+w8SbvKsuLI4UJ6V/KvB2uRa+HTvwaUUw41951F2jVn2GkwBiTSfB7lhnNEJ5yfJPAHm2X7Oe6neJbvIkj0SZJvVR/CLAxHPXate6uLTNiM7aPoSdq3c66r4fMbxTMUeJ3nhu9Dp1qY+2jLleez0ero0+54nOVHuYrfK0+5tTHjSxslFfEtNWnwVxYonpcGBPCpd4o6shfT/I6MvPtVChl09tQLmYa2MY8o3hJeg8UET7v7qrXm/tIGEd3jV6XsC41bpEoYTYu0fkB19JiVuri2jnErRcrT6ORcxKVnRSGuntaWPvNFjIm6zdSUs6Ge7uytwtRipyFYQo9xW/0lsWHLs1PoeDvSPmiQ8MxJHfYBP92R+2q/XfwNsRLXeeMZkQtaAv6K7F3R4+z2KNaRy8d6i79EA7hPIaga0n6IZ2kdWVnyrLkLvVw+q/ICqQqFqW3PeuPweUij2SdU53xDMmyyaMZKvNdnLpjMRxCRlLkEs6H7zWkUZwq852memMw1OURFDnU4WHeYwibc9u7Pi+XU7W+1rmE8uBTwNy4GBze/JXHKrZfiIVKnRl59xzQOpxWUDenxf86DsPHcqrPK5RbRt81ex4w69wv1hlZ9Ifr7xnLLWQ1l3MM55nko7Pekp8f+31RrZlKnNG8e/roj9o1YHgtFedBZekY764iK28oFbwX8MmQqP+ov1+Qv43wMqdRJkcdSuaeopya6SFTM9+49I3OfBYik6VTJlORmo0jmvRG7K46VDfhZzf3AOu+HcrfpeS/iPV/f7YPradkPUwWnTMHbWqLKfthb9H69Gzfny2TGN/l5Xd7W9CCd+ENasX3fO9Sf3zXt1UYW/k3SHiv31GJ6hciktXbPbuvujCC4s0b54DM93wjepees1j85tk44G7RvD+1KtGSPpHfLOiW4ruOlD1aq1N9V483B/iGfSfPD0XqN9TW0XYez1yJ81Ep56MVzvxt9CKH185n1e9mlXHZdbj089zZQvdLKM6293nVudG9Ui78Dno1flCBHzhSNkn7LygSTlV1Nm9eQXOuZXJvWCfKZCJZDxhndvL5ro5sFxW8FgHjv12Kvu1IegCydCn/HdENW0r0Rlo3+yQ9v+lYnUm9VSGt/h7l08sb11f/L4P1ysn25vWtzev3tzc+u6H/n4P31c/VL9VV2OO/U58BtSN1DBz+qP6m/qH+ubPY+dPOn3f+wl3fu6AxP1WFfzt//S+s/Kxx</latexit> <latexit sha1_base64="xtJlWHp4E1PWMU9pCMI1LHPPgQI=">AABB9HictVxLcxu5EYY3r7Xz8ianVC6TaJ3ybjmKrGxVUrWVqpUlWdaatmWTkr27tF18jGjaJIeeIekHV/8jh9xSueYnJMfkL+QfZE/5C+kHMMCQmGmM4hglCQPi6240gEZ3Y+judDTMZltb/7rw3re+/Z3vfu/9i5e+/4Mf/ujHlz/4yUmWzNNefNxLRkn6qNvJ4tFwEh/PhrNR/Giaxp1xdxQ/7L7Yxc8fLuI0GyaT1uzNNH487gwmw9NhrzODpuTyz9R9NVexGkGJVQQ/mZrB35HqwO9UfaMG8Dk+pWoIn3yjoqeXN7Y2t+hftF65risbSv87Sj6IjlVb9VWiekBrDDwmQKlHVDMoX6nraktNoe2xWhKnGfDqkURn6hJg59Arhh4daH0Bvwfw9JVuncDzmORGdA+4jOAnBWSkrgAmgX5pPqIePSNlbC2jvSSaKNsb+NvVtMbQOlPPoFXCmZ6hOBzLTJ2q39MYhjCmKbXg6Hqaypy0wrNkRzUDClNow3ofPk+h3iOk0XNEmIzGjrrt0Of/pp7Yis893XcO84tSXoESqaYefZJT6KgF0Y9oNufwGcszAs4DoBDrMWLtFel6TKOfQP8ltN+FckY1o5MulCW1nlUid6H4kLsi8gCKD3kgIhtQfMiGiDyC4kMeaSRiU9K5H9+E4sM3Rc73ofiQ90XkAyg+5AMReQLFhzwRkV9C8SG/FJE3ofiQN0XkbSg+5G0R2YLiQ7ZE5DEUH/JYRO5D8SH3NbJ8p6ZQEqIzFHblDtSLPNBSjKBlR5TvBllHH/ZGwJ7ulWDlXb0Hf/3YvQCdxiXY/YB1d1qClVfeAdhIP1a2RbfoNPFhb4nYQ1gBfuyhiP1cPS/Bfh6w016UYOW91oB+fqxsfe/Akx97R8TehZofK59R96DFj70XcGJMS7BHIva+elmCDbH6aQlWtvtNsCt+rHxOtaC/HxtiTeclWNmenoAH48fKp9VDaPVjH4rYR+p1CfaRiP0CrLsf+0XACfu2BGvO2Et0ggzIH4lhx1ZR6+S7EmtToNYR+I/ys2VEvnEX2iXMIMcMCDMWEQc54iAQ0cgRjWC5styOZuTvylyaOaIZiOjmZxPWZmL/ft6/T1GcjNjLEXsriCqPFOfajGVB3oVpkZCz/OTCWsiYktx+Yy3W66Ha8hrEvQKC1/YzWvnXKFrCCAo1VUXtWX7GMzKi5yrEK4rezCgNDxk3y62Ci3otoroeVFdEvfGg3oiouQc1F1ELD2ohouzOd3HtgBVg9Y9zsaQnXgHsI5eXCLyCHTh1bsEejWD9HIEX+IBa7sHfJsXeUqmSDKN5PCcxy/G4YIlTqC3VBrTbqHCP4mvOt8QgGfe8p2N8fMLcxlLvObbCZ/lJHuUZk3A6Q5JnkNNBbzGi/VSPzm1qOSPvjmv18LfyfW9q9fD7pPEz8uK5Vg8/09LPziF7S2Nb58A2YTdNtfZtvS4Nzr8wDVO/RKcuWlyc1bFeM0jvdU36h3pmDs8xL7tUY/3Yej0amTO+rDC+OjSsnjNHz/WooPfEXq+pRbVHMtFxr63XlSGhU3Si5bBPdWcG+/T1zJh6PRpH4HHtUsy9dOp1V+80H42t16NxojjveUaevKnXozGgZ9aHrdejgdmWjo7zbb2uZUcNcOxs63Wt+oSywJgD4jXPLdYrSslPcnP7b4Rsjevzr59jmLN5kscI1ZSsb1tOp5ufZdUSGX8hBqs2qykH+hdzxwcr0liqbTG+YhlmhfN9nY4941HzDdBiBLuf7wCknPkIJDQ5Cb6neULUqjHFkRnctojDVXK6gmrr1pnoLVq+nDUqtj2lVikus6O1emyTvc5o7U3JJ2yQZiU9NEpnuIyipKFGQUMyvTq6e6v3a1H7WyJuuoKY5iutRzdCfJNWHaf6tN50dHxF3/LMoPCdj12/mG0+1dYGY56EbBHKUsXT7WfySG4bnqvXlM1x82cRzSjaqwVZjSHdSGViFGqyxeyNL+nZ0j6mOznkwTR6MI+RpjJVfGuGWXTMp0dkUV17K/FGfZkMHdczsrrGHlejBw564EHXj3F24cS4C7UWxAzH8NQKiHIu5bpKSOOp+nV+O5rQDFZH9KOChTQ02N7EBQtZFWU/K1B5BWhcDRylh9NYpWPw7TVKctTvk8fGrkXLf4Vubs39dofWePlqLs/E9InrNnGNaNfwrS4/rXJgCZbeT7bJf60eJfKrwxFtqMT1icOZ9TKhG39+A2FKnvGIdpu0O4q93fzU6ieG05Eyd+d4m52QhYzI/kVwPiW0JiP6cd8dMDfobBFGZCND7M4w9258vs5QXGPWjxsqfqvBrreYbNmc+Bu67u7KaC1yxMDnwNnK2jY6aZAvGBPXVFt3u7erTx9E2vck3FXCFO1auUr8P6Lf5sesk421FYEaxhnItK3zzUdCMQvqqEOnfLUNMn1dKT/MZXiipbbnn5Xpw4JkexRxoTx4WveBc4+emReukpTkztb68Dlalc1FytMVPeJoTymKZ7s/0Ccwyn2NTskN2nNtWiUDWAWzPIowfaUs8irfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXClHsKp5/b6g3eTXerrSq5rPhNbi2NnLX0PrL+C3kds8h9HpFqzCDVoDTME+WY1wS7TWI4zXjQIvszINLfts+dk1aXq5LeeJr9m62Rh7UZvKEa2a1zprYernofHcofE8UIctumu0WjTtxhI9FWOLlr6tDOVXh1urBuW5SFn2yAxqGCClG0uFUe2LVOUY36DeirS2RFod2K3ubYC750OQ/r2+uru/zk/3SN0k36ZHHhjHL33apUPyuUxrdaTGFJDzJ9q+uru/TS3IvUsWFCnze5y4Y/jWqUflLJf0V/pkS8jOW4tg3lt6pfsYG9um+m/XkGPaExntS4P4hHrEWn5XjmjFIm06PkdEmf8O+VTsd1THzG5vOydRwZ+w8SbvKsuLI4UJ6V/KvB2uRa+HTvwaUUw41951F2jVn2GkwBiTSfB7lhnNEJ5yfJPAHm2X7Oe6neJbvIkj0SZJvVR/CLAxHPXate6uLTNiM7aPoSdq3c66r4fMbxTMUeJ3nhu9Dp1qY+2jLleez0ero0+54nOVHuYrfK0+5tTHjSxslFfEtNWnwVxYonpcGBPCpd4o6shfT/I6MvPtVChl09tQLmYa2MY8o3hJeg8UET7v7qrXm/tIGEd3jV6XsC41bpEoYTYu0fkB19JiVuri2jnErRcrT6ORcxKVnRSGuntaWPvNFjIm6zdSUs6Ge7uytwtRipyFYQo9xW/0lsWHLs1PoeDvSPmiQ8MxJHfYBP92R+2q/XfwNsRLXeeMZkQtaAv6K7F3R4+z2KNaRy8d6i79EA7hPIaga0n6IZ2kdWVnyrLkLvVw+q/ICqQqFqW3PeuPweUij2SdU53xDMmyyaMZKvNdnLpjMRxCRlLkEs6H7zWkUZwq852memMw1OURFDnU4WHeYwibc9u7Pi+XU7W+1rmE8uBTwNy4GBze/JXHKrZfiIVKnRl59xzQOpxWUDenxf86DsPHcqrPK5RbRt81ex4w69wv1hlZ9Ifr7xnLLWQ1l3MM55nko7Pekp8f+31RrZlKnNG8e/roj9o1YHgtFedBZekY764iK28oFbwX8MmQqP+ov1+Qv43wMqdRJkcdSuaeopya6SFTM9+49I3OfBYik6VTJlORmo0jmvRG7K46VDfhZzf3AOu+HcrfpeS/iPV/f7YPradkPUwWnTMHbWqLKfthb9H69Gzfny2TGN/l5Xd7W9CCd+ENasX3fO9Sf3zXt1UYW/k3SHiv31GJ6hciktXbPbuvujCC4s0b54DM93wjepees1j85tk44G7RvD+1KtGSPpHfLOiW4ruOlD1aq1N9V483B/iGfSfPD0XqN9TW0XYez1yJ81Ep56MVzvxt9CKH185n1e9mlXHZdbj089zZQvdLKM6293nVudG9Ui78Dno1flCBHzhSNkn7LygSTlV1Nm9eQXOuZXJvWCfKZCJZDxhndvL5ro5sFxW8FgHjv12Kvu1IegCydCn/HdENW0r0Rlo3+yQ9v+lYnUm9VSGt/h7l08sb11f/L4P1ysn25vWtzev3tzc+u6H/n4P31c/VL9VV2OO/U58BtSN1DBz+qP6m/qH+ubPY+dPOn3f+wl3fu6AxP1WFfzt//S+s/Kxx</latexit> du transport optimal? <latexit sha1_base64="QtGQyK7T2RsIOekWCYHFOw7OSS4=">AABB13ictVzdctu4FUa2f5v0L9tOr3rD1ptOtpOmtrsz7cxOp+vYjuONkiiR7CS7SjKURCtMKFEhKedH6+ldp7d9hN62D9Hn6Bu0V32Fnh+AACWQAN00GNsghO+cg0Pg4JwDKMN5EufF5uY/L3zwjW9+69vf+fDipe9+7/s/+OHlj350nKeLbBQdjdIkzR4NwzxK4ll0VMRFEj2aZ1E4HSbRw+HLXfz84WmU5XE66xdv59GTaTiZxSfxKCyg6dnln4wXQZGFs3yeZkWQzot4GiZ/eHZ5Y/P6Jv0L1itbsrIh5L9u+lFwJAZiLFIxEgsxFZGYiQLqiQhFDuUrsSU2xRzanogltGVQi+nzSJyJS4BdQK8IeoTQ+hJ+T+DpK9k6g2ekmRN6BFwS+MkAGYgrgEmhXwZ15BbQ5wuijK11tJdEE2V7C3+HktYUWgvxHFpdONXTF4djKcSJ+B2NIYYxzakFRzeSVBakFZQ8MEZVAIU5tGF9DJ9nUB8RUuk5IExOY0fdhvT5v6gntuLzSPZdiH+TlFegBKInR5+WFEJxSvQDepsL+IzlSYDzBChEcoxYe026ntLoZ9B/Ce13oZxRTelkCGVJrWeNyF0oNuSuE3kAxYY8cCI7UGzIjhPZhWJDdiUSsRnp3I7vQbHhe07O96HYkPedyAdQbMgHTuQxFBvy2In8EooN+aUTeROKDXnTibwNxYa87UT2odiQfSfyCIoNeeRE7kOxIfclsn6lZlBSohM7VuUO1Ks80FIk0LLjlO8GWUcb9obHmh7VYN2reg/+2rF7HjqNarD7HvPupAbrnnkHYCPtWLctukW7iQ17y4k9hBlgxx46sV+IFzXYLzxW2ssarHutdaCfHeu2vnfgyY6948TehZod696j7kGLHXvPY8eY12C7Tux98aoG62P1sxqs2+73wK7Yse59qg/97Vgfa7qowbrt6TF4MHase7d6CK127EMn9pF4U4N95MQ+Butuxz722GHf1WDVHnuJdpAJ+SMRrNgmamG5KrE2B2qhg39S7i0J+cZDaHdhJiVmQpipE3FQIg48EZ0S0fGWKy/taE7+rptLr0T0PBHDcm/CWuHsPy77Yy3xQOyViL0VRJNHiu9ajeWUvAvV4kIW5c6FNZ8xpaX9xlok50Oz5VWIexUEz+3nNPOvUbSEERRqqona83KPZ2RAz02I1xS9qVEqHm5cUVoFE/XGiRpaUEMn6q0F9daJWlhQCyfq1II6daL0yjdxA48ZoPWP72JJTzwD2EeuLwF4BTuw69yCNRrA/OmCF/iAWu7B3x7F3q7SJBlG87hPYpbjScUSZ1Bbig1o11HhHsXXCa2wCCTjnvdkjI9PmNtYyjXHVvis3MmDMmPiTycmeSYlHfQWA1pP7ejcppYz8u641g5/q1z3qtYOv08aPyMvnmvt8IWUvjiH7H2J7Z8D24PVNJfa1/W2NDj/wjRU/RLtumhx8a1O5ZxBem9a0j+Ub+bwHO9ll2qsH11vRyM3xpdXxteGhtZzbui5HRX0ntjrVbWg9UhmMu7V9bYypLSLzqQc+qntm8E+Y/lmVL0djS54XLsUcy+NetvZOy9Ho+vtaBwLznuekSev6u1oTOiZ9aHr7WhgtiWUcb6ut7XsqAGOnXW9rVWfURYYc0A857lFe0UZ+UkLSS0m/6A5W2P6/Ov7GOZsnpYxQjMl7dvW0xmWe1mzRMpfiMCqFS3lQP9iYfhgVRpLse2Mr1iGorK/r9PRezxqvgNaDGD18xmAK2eegIQqJ4HWOwGKW86oqzoyhdt24nCWnKygBrK1cHqLmi9njaptz6jVFZfp0Wo9Dshe5zT35uQTdkizLj10at9wHUWXhjoVDbnptdHdO7leq9rfdOLmK4h5OdNGdCLEJ2nNcapN6z1Dx1fkKU8Bhc989PzFbPOJtDYY86Rki1CWJp5mP5VHMttwX70mdI6bPwvojaK9OiWrEdOJVO6MQlW2mL3xJT1r2kd0Joc8mMYI3mMgqcwFn5phFh3z6QFZVNPeunijvlSGjus5WV1lj5vREwM9saDbxzi7sGPchVofYoYjeOp7RDmXSl2lpPFM/Ko8HU3pDTZH9EnFQioabG+iioVsirKfV6i8BjTOBo7S/Wms0lH4wRold9Rvk0fHrlXLf4VObtX5dkhzvH4212dixsR1m7gGtGr4VJefVjmwBEvrJ9vkvzaPEvm14Yg21MX1qcGZ9TKjE/+IItg5ecYJrTbX6qj2NvNTq58oTl2hzs7xNDslCxmQ/Qtgf0ppTgb0Y94dUCfobBESspE+dicuvRubrxM755j242LBtxr0fIvIli2Iv6Jrrq6c5iJHDLwPnK3MbaWTDvmCEXHNpHXXa7t590GkvidhzhKmqOfKVeL/Cf1WP2qebKzNCNQwvoFc2jrb+0gpZkEdhbTLN9sg1deU8uNShqdSar3/aZk+rki2RxEXyoO79Rg4j+iZeeEsyUjufK0P76NN2VykPF/RI472hKJ4tvsTuQOj3Ndol9ygNTegWTKBWVCUUYTq68oir/Jt5lWl7kc7/79Q17quag0pBkJncFlDrvx+RNGaKWUCs5rn70taTXatZyu9mvnMaC5OjbX8NbT+DH4rudWzH51hxSrcoDnAFPST1gi3BGs9/HjdqPBSM1PR0s+an56TqpfZcp74mq2bjrFPW1Pp0qx5I7MWqn4eGi8MGi88ddins0atRdWuLNEzZ2zRl6eVvvzacOu3oLxwUnZ7ZAoVe0hpxlJ+VMdOqu4YX6HeOWltOmmFsFrN0wBzzfsg7Wt9dXV/Xe7ugbhJvs2IPDCOX8a0SmPyuVRrc6TGFJDzp9K+mqt/QC3IfUgWFCnzPU5cMXzqNKJyVkr6C7mzpWTntUVQ95Zeyz7Kxg6o/ps15JTWRE7rUiE+pR6RlN+UI1ixSNcNnyOgzH9IPhX7Hc0xs9lbv5Og4k/oeJNXlebFkcKM9O/KvB2uRa+HRvwaUEy4kN71EGi1f8NIgTEqk2D3LHN6Q7jL8UkCe7RDsp/rdopP8WaGRNdJ6qX4vYeN4ahXz3VzbqkRq7H9Enqi1vVbt/Vw80u8Obr4nedEL6RdbSp91OXK8/lohXKXqz436WGxwlfrY0F9zMhCR3lVzEB85s2FJWrHhTE+XNqNoo387SRvIzOfTvlSVr0V5WqmgW3Mc4qXXPdAEWHz7q5avblPHOMYrtEbEtakxi0uSpiNS2V+wLS0mJW6uLYPcevFxt0oMXaiup1CUTd3C22/2UJGZP0S4crZcG9T9kElSnFnYZjCSPCN3rr40KT5GRT8HQhbdKg4+uQOe+Df7ohdsf8ebkO8knXOaAbUgrZgvBJ7h3Kc1R7NOnplUDfp+3Dw5xGDrl3Sx7STtpWdKbslN6n7039NViATkVN63bP9GEwu7pGsc2oznpgsm3s0sVDfxWk7FsXBZyRVLv58+FzDNYoTob7T1G4Mirp7BFUObXioewx+71z3bs/L5NSsr3Uuvjx4F1AnLgqHJ3/1sYru52OhMuONvH8OaB1OGqir3eJ/HYfiozm15+XLLafvmr3weOvcL5IZWfSH268Zzc1nNtdz9OeZlqPT3pKdH/t9Qas3lRqjef/00R/Vc0DxWgrOg7qlY7w5i7S8vlTwXMAmQyr+I/5xwf1thFcljTo52lBS5xT11FQPNzX1jUvb6NRnPjJpOnUyVanpOKJHN2J3xaG4CT+7pQfY9nYof5eS/yLW/v3ZMbSekPVQWXTOHAyoLaLshz5FG9Ozvj9bJzHe5eW7vX1owbPwDrXiPd+71B/v+vYrY6v/Bgmv9TsiFeNKRLJ6uqfX1RBGUD154xyQ+p5vQHfpOYvFN8+mHmeL6v7UqkRL+sR9s2BYix8aUo5ors7lWT2eHOAN+7DMDwXi19QWSjuPe66Lc7eWc3eFc07aqXJ4Y3zWfDerjsuuwWVc5s5OZb+U4mx9ntecG92r5cJ30Jvxkwb8xJCyR9p/SZFwJpqzeYsGmgspk3nCOhMqE8l6wDgzLN93c2R72sDr1GP8t2vRtw1JD0CWIeW/Azphy4heInWzT9LzTcfmTOqtBmnl9yifXd7YWv2/DNYrx9vXtzavb93f3vj8hvx/Dj4UPxU/F1dhjf9WfA7UuuKITr3/Kv4m/r7zeOePO3/a+TN3/eCCxPxYVP7t/OW/q/qpVg==</latexit> <latexit sha1_base64="QtGQyK7T2RsIOekWCYHFOw7OSS4=">AABB13ictVzdctu4FUa2f5v0L9tOr3rD1ptOtpOmtrsz7cxOp+vYjuONkiiR7CS7SjKURCtMKFEhKedH6+ldp7d9hN62D9Hn6Bu0V32Fnh+AACWQAN00GNsghO+cg0Pg4JwDKMN5EufF5uY/L3zwjW9+69vf+fDipe9+7/s/+OHlj350nKeLbBQdjdIkzR4NwzxK4ll0VMRFEj2aZ1E4HSbRw+HLXfz84WmU5XE66xdv59GTaTiZxSfxKCyg6dnln4wXQZGFs3yeZkWQzot4GiZ/eHZ5Y/P6Jv0L1itbsrIh5L9u+lFwJAZiLFIxEgsxFZGYiQLqiQhFDuUrsSU2xRzanogltGVQi+nzSJyJS4BdQK8IeoTQ+hJ+T+DpK9k6g2ekmRN6BFwS+MkAGYgrgEmhXwZ15BbQ5wuijK11tJdEE2V7C3+HktYUWgvxHFpdONXTF4djKcSJ+B2NIYYxzakFRzeSVBakFZQ8MEZVAIU5tGF9DJ9nUB8RUuk5IExOY0fdhvT5v6gntuLzSPZdiH+TlFegBKInR5+WFEJxSvQDepsL+IzlSYDzBChEcoxYe026ntLoZ9B/Ce13oZxRTelkCGVJrWeNyF0oNuSuE3kAxYY8cCI7UGzIjhPZhWJDdiUSsRnp3I7vQbHhe07O96HYkPedyAdQbMgHTuQxFBvy2In8EooN+aUTeROKDXnTibwNxYa87UT2odiQfSfyCIoNeeRE7kOxIfclsn6lZlBSohM7VuUO1Ks80FIk0LLjlO8GWUcb9obHmh7VYN2reg/+2rF7HjqNarD7HvPupAbrnnkHYCPtWLctukW7iQ17y4k9hBlgxx46sV+IFzXYLzxW2ssarHutdaCfHeu2vnfgyY6948TehZod696j7kGLHXvPY8eY12C7Tux98aoG62P1sxqs2+73wK7Yse59qg/97Vgfa7qowbrt6TF4MHase7d6CK127EMn9pF4U4N95MQ+Butuxz722GHf1WDVHnuJdpAJ+SMRrNgmamG5KrE2B2qhg39S7i0J+cZDaHdhJiVmQpipE3FQIg48EZ0S0fGWKy/taE7+rptLr0T0PBHDcm/CWuHsPy77Yy3xQOyViL0VRJNHiu9ajeWUvAvV4kIW5c6FNZ8xpaX9xlok50Oz5VWIexUEz+3nNPOvUbSEERRqqona83KPZ2RAz02I1xS9qVEqHm5cUVoFE/XGiRpaUEMn6q0F9daJWlhQCyfq1II6daL0yjdxA48ZoPWP72JJTzwD2EeuLwF4BTuw69yCNRrA/OmCF/iAWu7B3x7F3q7SJBlG87hPYpbjScUSZ1Bbig1o11HhHsXXCa2wCCTjnvdkjI9PmNtYyjXHVvis3MmDMmPiTycmeSYlHfQWA1pP7ejcppYz8u641g5/q1z3qtYOv08aPyMvnmvt8IWUvjiH7H2J7Z8D24PVNJfa1/W2NDj/wjRU/RLtumhx8a1O5ZxBem9a0j+Ub+bwHO9ll2qsH11vRyM3xpdXxteGhtZzbui5HRX0ntjrVbWg9UhmMu7V9bYypLSLzqQc+qntm8E+Y/lmVL0djS54XLsUcy+NetvZOy9Ho+vtaBwLznuekSev6u1oTOiZ9aHr7WhgtiWUcb6ut7XsqAGOnXW9rVWfURYYc0A857lFe0UZ+UkLSS0m/6A5W2P6/Ov7GOZsnpYxQjMl7dvW0xmWe1mzRMpfiMCqFS3lQP9iYfhgVRpLse2Mr1iGorK/r9PRezxqvgNaDGD18xmAK2eegIQqJ4HWOwGKW86oqzoyhdt24nCWnKygBrK1cHqLmi9njaptz6jVFZfp0Wo9Dshe5zT35uQTdkizLj10at9wHUWXhjoVDbnptdHdO7leq9rfdOLmK4h5OdNGdCLEJ2nNcapN6z1Dx1fkKU8Bhc989PzFbPOJtDYY86Rki1CWJp5mP5VHMttwX70mdI6bPwvojaK9OiWrEdOJVO6MQlW2mL3xJT1r2kd0Joc8mMYI3mMgqcwFn5phFh3z6QFZVNPeunijvlSGjus5WV1lj5vREwM9saDbxzi7sGPchVofYoYjeOp7RDmXSl2lpPFM/Ko8HU3pDTZH9EnFQioabG+iioVsirKfV6i8BjTOBo7S/Wms0lH4wRold9Rvk0fHrlXLf4VObtX5dkhzvH4212dixsR1m7gGtGr4VJefVjmwBEvrJ9vkvzaPEvm14Yg21MX1qcGZ9TKjE/+IItg5ecYJrTbX6qj2NvNTq58oTl2hzs7xNDslCxmQ/Qtgf0ppTgb0Y94dUCfobBESspE+dicuvRubrxM755j242LBtxr0fIvIli2Iv6Jrrq6c5iJHDLwPnK3MbaWTDvmCEXHNpHXXa7t590GkvidhzhKmqOfKVeL/Cf1WP2qebKzNCNQwvoFc2jrb+0gpZkEdhbTLN9sg1deU8uNShqdSar3/aZk+rki2RxEXyoO79Rg4j+iZeeEsyUjufK0P76NN2VykPF/RI472hKJ4tvsTuQOj3Ndol9ygNTegWTKBWVCUUYTq68oir/Jt5lWl7kc7/79Q17quag0pBkJncFlDrvx+RNGaKWUCs5rn70taTXatZyu9mvnMaC5OjbX8NbT+DH4rudWzH51hxSrcoDnAFPST1gi3BGs9/HjdqPBSM1PR0s+an56TqpfZcp74mq2bjrFPW1Pp0qx5I7MWqn4eGi8MGi88ddins0atRdWuLNEzZ2zRl6eVvvzacOu3oLxwUnZ7ZAoVe0hpxlJ+VMdOqu4YX6HeOWltOmmFsFrN0wBzzfsg7Wt9dXV/Xe7ugbhJvs2IPDCOX8a0SmPyuVRrc6TGFJDzp9K+mqt/QC3IfUgWFCnzPU5cMXzqNKJyVkr6C7mzpWTntUVQ95Zeyz7Kxg6o/ps15JTWRE7rUiE+pR6RlN+UI1ixSNcNnyOgzH9IPhX7Hc0xs9lbv5Og4k/oeJNXlebFkcKM9O/KvB2uRa+HRvwaUEy4kN71EGi1f8NIgTEqk2D3LHN6Q7jL8UkCe7RDsp/rdopP8WaGRNdJ6qX4vYeN4ahXz3VzbqkRq7H9Enqi1vVbt/Vw80u8Obr4nedEL6RdbSp91OXK8/lohXKXqz436WGxwlfrY0F9zMhCR3lVzEB85s2FJWrHhTE+XNqNoo387SRvIzOfTvlSVr0V5WqmgW3Mc4qXXPdAEWHz7q5avblPHOMYrtEbEtakxi0uSpiNS2V+wLS0mJW6uLYPcevFxt0oMXaiup1CUTd3C22/2UJGZP0S4crZcG9T9kElSnFnYZjCSPCN3rr40KT5GRT8HQhbdKg4+uQOe+Df7ohdsf8ebkO8knXOaAbUgrZgvBJ7h3Kc1R7NOnplUDfp+3Dw5xGDrl3Sx7STtpWdKbslN6n7039NViATkVN63bP9GEwu7pGsc2oznpgsm3s0sVDfxWk7FsXBZyRVLv58+FzDNYoTob7T1G4Mirp7BFUObXioewx+71z3bs/L5NSsr3Uuvjx4F1AnLgqHJ3/1sYru52OhMuONvH8OaB1OGqir3eJ/HYfiozm15+XLLafvmr3weOvcL5IZWfSH268Zzc1nNtdz9OeZlqPT3pKdH/t9Qas3lRqjef/00R/Vc0DxWgrOg7qlY7w5i7S8vlTwXMAmQyr+I/5xwf1thFcljTo52lBS5xT11FQPNzX1jUvb6NRnPjJpOnUyVanpOKJHN2J3xaG4CT+7pQfY9nYof5eS/yLW/v3ZMbSekPVQWXTOHAyoLaLshz5FG9Ozvj9bJzHe5eW7vX1owbPwDrXiPd+71B/v+vYrY6v/Bgmv9TsiFeNKRLJ6uqfX1RBGUD154xyQ+p5vQHfpOYvFN8+mHmeL6v7UqkRL+sR9s2BYix8aUo5ors7lWT2eHOAN+7DMDwXi19QWSjuPe66Lc7eWc3eFc07aqXJ4Y3zWfDerjsuuwWVc5s5OZb+U4mx9ntecG92r5cJ30Jvxkwb8xJCyR9p/SZFwJpqzeYsGmgspk3nCOhMqE8l6wDgzLN93c2R72sDr1GP8t2vRtw1JD0CWIeW/Azphy4heInWzT9LzTcfmTOqtBmnl9yifXd7YWv2/DNYrx9vXtzavb93f3vj8hvx/Dj4UPxU/F1dhjf9WfA7UuuKITr3/Kv4m/r7zeOePO3/a+TN3/eCCxPxYVP7t/OW/q/qpVg==</latexit> <latexit sha1_base64="QtGQyK7T2RsIOekWCYHFOw7OSS4=">AABB13ictVzdctu4FUa2f5v0L9tOr3rD1ptOtpOmtrsz7cxOp+vYjuONkiiR7CS7SjKURCtMKFEhKedH6+ldp7d9hN62D9Hn6Bu0V32Fnh+AACWQAN00GNsghO+cg0Pg4JwDKMN5EufF5uY/L3zwjW9+69vf+fDipe9+7/s/+OHlj350nKeLbBQdjdIkzR4NwzxK4ll0VMRFEj2aZ1E4HSbRw+HLXfz84WmU5XE66xdv59GTaTiZxSfxKCyg6dnln4wXQZGFs3yeZkWQzot4GiZ/eHZ5Y/P6Jv0L1itbsrIh5L9u+lFwJAZiLFIxEgsxFZGYiQLqiQhFDuUrsSU2xRzanogltGVQi+nzSJyJS4BdQK8IeoTQ+hJ+T+DpK9k6g2ekmRN6BFwS+MkAGYgrgEmhXwZ15BbQ5wuijK11tJdEE2V7C3+HktYUWgvxHFpdONXTF4djKcSJ+B2NIYYxzakFRzeSVBakFZQ8MEZVAIU5tGF9DJ9nUB8RUuk5IExOY0fdhvT5v6gntuLzSPZdiH+TlFegBKInR5+WFEJxSvQDepsL+IzlSYDzBChEcoxYe026ntLoZ9B/Ce13oZxRTelkCGVJrWeNyF0oNuSuE3kAxYY8cCI7UGzIjhPZhWJDdiUSsRnp3I7vQbHhe07O96HYkPedyAdQbMgHTuQxFBvy2In8EooN+aUTeROKDXnTibwNxYa87UT2odiQfSfyCIoNeeRE7kOxIfclsn6lZlBSohM7VuUO1Ks80FIk0LLjlO8GWUcb9obHmh7VYN2reg/+2rF7HjqNarD7HvPupAbrnnkHYCPtWLctukW7iQ17y4k9hBlgxx46sV+IFzXYLzxW2ssarHutdaCfHeu2vnfgyY6948TehZod696j7kGLHXvPY8eY12C7Tux98aoG62P1sxqs2+73wK7Yse59qg/97Vgfa7qowbrt6TF4MHase7d6CK127EMn9pF4U4N95MQ+Butuxz722GHf1WDVHnuJdpAJ+SMRrNgmamG5KrE2B2qhg39S7i0J+cZDaHdhJiVmQpipE3FQIg48EZ0S0fGWKy/taE7+rptLr0T0PBHDcm/CWuHsPy77Yy3xQOyViL0VRJNHiu9ajeWUvAvV4kIW5c6FNZ8xpaX9xlok50Oz5VWIexUEz+3nNPOvUbSEERRqqona83KPZ2RAz02I1xS9qVEqHm5cUVoFE/XGiRpaUEMn6q0F9daJWlhQCyfq1II6daL0yjdxA48ZoPWP72JJTzwD2EeuLwF4BTuw69yCNRrA/OmCF/iAWu7B3x7F3q7SJBlG87hPYpbjScUSZ1Bbig1o11HhHsXXCa2wCCTjnvdkjI9PmNtYyjXHVvis3MmDMmPiTycmeSYlHfQWA1pP7ejcppYz8u641g5/q1z3qtYOv08aPyMvnmvt8IWUvjiH7H2J7Z8D24PVNJfa1/W2NDj/wjRU/RLtumhx8a1O5ZxBem9a0j+Ub+bwHO9ll2qsH11vRyM3xpdXxteGhtZzbui5HRX0ntjrVbWg9UhmMu7V9bYypLSLzqQc+qntm8E+Y/lmVL0djS54XLsUcy+NetvZOy9Ho+vtaBwLznuekSev6u1oTOiZ9aHr7WhgtiWUcb6ut7XsqAGOnXW9rVWfURYYc0A857lFe0UZ+UkLSS0m/6A5W2P6/Ov7GOZsnpYxQjMl7dvW0xmWe1mzRMpfiMCqFS3lQP9iYfhgVRpLse2Mr1iGorK/r9PRezxqvgNaDGD18xmAK2eegIQqJ4HWOwGKW86oqzoyhdt24nCWnKygBrK1cHqLmi9njaptz6jVFZfp0Wo9Dshe5zT35uQTdkizLj10at9wHUWXhjoVDbnptdHdO7leq9rfdOLmK4h5OdNGdCLEJ2nNcapN6z1Dx1fkKU8Bhc989PzFbPOJtDYY86Rki1CWJp5mP5VHMttwX70mdI6bPwvojaK9OiWrEdOJVO6MQlW2mL3xJT1r2kd0Joc8mMYI3mMgqcwFn5phFh3z6QFZVNPeunijvlSGjus5WV1lj5vREwM9saDbxzi7sGPchVofYoYjeOp7RDmXSl2lpPFM/Ko8HU3pDTZH9EnFQioabG+iioVsirKfV6i8BjTOBo7S/Wms0lH4wRold9Rvk0fHrlXLf4VObtX5dkhzvH4212dixsR1m7gGtGr4VJefVjmwBEvrJ9vkvzaPEvm14Yg21MX1qcGZ9TKjE/+IItg5ecYJrTbX6qj2NvNTq58oTl2hzs7xNDslCxmQ/Qtgf0ppTgb0Y94dUCfobBESspE+dicuvRubrxM755j242LBtxr0fIvIli2Iv6Jrrq6c5iJHDLwPnK3MbaWTDvmCEXHNpHXXa7t590GkvidhzhKmqOfKVeL/Cf1WP2qebKzNCNQwvoFc2jrb+0gpZkEdhbTLN9sg1deU8uNShqdSar3/aZk+rki2RxEXyoO79Rg4j+iZeeEsyUjufK0P76NN2VykPF/RI472hKJ4tvsTuQOj3Ndol9ygNTegWTKBWVCUUYTq68oir/Jt5lWl7kc7/79Q17quag0pBkJncFlDrvx+RNGaKWUCs5rn70taTXatZyu9mvnMaC5OjbX8NbT+DH4rudWzH51hxSrcoDnAFPST1gi3BGs9/HjdqPBSM1PR0s+an56TqpfZcp74mq2bjrFPW1Pp0qx5I7MWqn4eGi8MGi88ddins0atRdWuLNEzZ2zRl6eVvvzacOu3oLxwUnZ7ZAoVe0hpxlJ+VMdOqu4YX6HeOWltOmmFsFrN0wBzzfsg7Wt9dXV/Xe7ugbhJvs2IPDCOX8a0SmPyuVRrc6TGFJDzp9K+mqt/QC3IfUgWFCnzPU5cMXzqNKJyVkr6C7mzpWTntUVQ95Zeyz7Kxg6o/ps15JTWRE7rUiE+pR6RlN+UI1ixSNcNnyOgzH9IPhX7Hc0xs9lbv5Og4k/oeJNXlebFkcKM9O/KvB2uRa+HRvwaUEy4kN71EGi1f8NIgTEqk2D3LHN6Q7jL8UkCe7RDsp/rdopP8WaGRNdJ6qX4vYeN4ahXz3VzbqkRq7H9Enqi1vVbt/Vw80u8Obr4nedEL6RdbSp91OXK8/lohXKXqz436WGxwlfrY0F9zMhCR3lVzEB85s2FJWrHhTE+XNqNoo387SRvIzOfTvlSVr0V5WqmgW3Mc4qXXPdAEWHz7q5avblPHOMYrtEbEtakxi0uSpiNS2V+wLS0mJW6uLYPcevFxt0oMXaiup1CUTd3C22/2UJGZP0S4crZcG9T9kElSnFnYZjCSPCN3rr40KT5GRT8HQhbdKg4+uQOe+Df7ohdsf8ebkO8knXOaAbUgrZgvBJ7h3Kc1R7NOnplUDfp+3Dw5xGDrl3Sx7STtpWdKbslN6n7039NViATkVN63bP9GEwu7pGsc2oznpgsm3s0sVDfxWk7FsXBZyRVLv58+FzDNYoTob7T1G4Mirp7BFUObXioewx+71z3bs/L5NSsr3Uuvjx4F1AnLgqHJ3/1sYru52OhMuONvH8OaB1OGqir3eJ/HYfiozm15+XLLafvmr3weOvcL5IZWfSH268Zzc1nNtdz9OeZlqPT3pKdH/t9Qas3lRqjef/00R/Vc0DxWgrOg7qlY7w5i7S8vlTwXMAmQyr+I/5xwf1thFcljTo52lBS5xT11FQPNzX1jUvb6NRnPjJpOnUyVanpOKJHN2J3xaG4CT+7pQfY9nYof5eS/yLW/v3ZMbSekPVQWXTOHAyoLaLshz5FG9Ozvj9bJzHe5eW7vX1owbPwDrXiPd+71B/v+vYrY6v/Bgmv9TsiFeNKRLJ6uqfX1RBGUD154xyQ+p5vQHfpOYvFN8+mHmeL6v7UqkRL+sR9s2BYix8aUo5ors7lWT2eHOAN+7DMDwXi19QWSjuPe66Lc7eWc3eFc07aqXJ4Y3zWfDerjsuuwWVc5s5OZb+U4mx9ntecG92r5cJ30Jvxkwb8xJCyR9p/SZFwJpqzeYsGmgspk3nCOhMqE8l6wDgzLN93c2R72sDr1GP8t2vRtw1JD0CWIeW/Azphy4heInWzT9LzTcfmTOqtBmnl9yifXd7YWv2/DNYrx9vXtzavb93f3vj8hvx/Dj4UPxU/F1dhjf9WfA7UuuKITr3/Kv4m/r7zeOePO3/a+TN3/eCCxPxYVP7t/OW/q/qpVg==</latexit> <latexit sha1_base64="QtGQyK7T2RsIOekWCYHFOw7OSS4=">AABB13ictVzdctu4FUa2f5v0L9tOr3rD1ptOtpOmtrsz7cxOp+vYjuONkiiR7CS7SjKURCtMKFEhKedH6+ldp7d9hN62D9Hn6Bu0V32Fnh+AACWQAN00GNsghO+cg0Pg4JwDKMN5EufF5uY/L3zwjW9+69vf+fDipe9+7/s/+OHlj350nKeLbBQdjdIkzR4NwzxK4ll0VMRFEj2aZ1E4HSbRw+HLXfz84WmU5XE66xdv59GTaTiZxSfxKCyg6dnln4wXQZGFs3yeZkWQzot4GiZ/eHZ5Y/P6Jv0L1itbsrIh5L9u+lFwJAZiLFIxEgsxFZGYiQLqiQhFDuUrsSU2xRzanogltGVQi+nzSJyJS4BdQK8IeoTQ+hJ+T+DpK9k6g2ekmRN6BFwS+MkAGYgrgEmhXwZ15BbQ5wuijK11tJdEE2V7C3+HktYUWgvxHFpdONXTF4djKcSJ+B2NIYYxzakFRzeSVBakFZQ8MEZVAIU5tGF9DJ9nUB8RUuk5IExOY0fdhvT5v6gntuLzSPZdiH+TlFegBKInR5+WFEJxSvQDepsL+IzlSYDzBChEcoxYe026ntLoZ9B/Ce13oZxRTelkCGVJrWeNyF0oNuSuE3kAxYY8cCI7UGzIjhPZhWJDdiUSsRnp3I7vQbHhe07O96HYkPedyAdQbMgHTuQxFBvy2In8EooN+aUTeROKDXnTibwNxYa87UT2odiQfSfyCIoNeeRE7kOxIfclsn6lZlBSohM7VuUO1Ks80FIk0LLjlO8GWUcb9obHmh7VYN2reg/+2rF7HjqNarD7HvPupAbrnnkHYCPtWLctukW7iQ17y4k9hBlgxx46sV+IFzXYLzxW2ssarHutdaCfHeu2vnfgyY6948TehZod696j7kGLHXvPY8eY12C7Tux98aoG62P1sxqs2+73wK7Yse59qg/97Vgfa7qowbrt6TF4MHase7d6CK127EMn9pF4U4N95MQ+Butuxz722GHf1WDVHnuJdpAJ+SMRrNgmamG5KrE2B2qhg39S7i0J+cZDaHdhJiVmQpipE3FQIg48EZ0S0fGWKy/taE7+rptLr0T0PBHDcm/CWuHsPy77Yy3xQOyViL0VRJNHiu9ajeWUvAvV4kIW5c6FNZ8xpaX9xlok50Oz5VWIexUEz+3nNPOvUbSEERRqqona83KPZ2RAz02I1xS9qVEqHm5cUVoFE/XGiRpaUEMn6q0F9daJWlhQCyfq1II6daL0yjdxA48ZoPWP72JJTzwD2EeuLwF4BTuw69yCNRrA/OmCF/iAWu7B3x7F3q7SJBlG87hPYpbjScUSZ1Bbig1o11HhHsXXCa2wCCTjnvdkjI9PmNtYyjXHVvis3MmDMmPiTycmeSYlHfQWA1pP7ejcppYz8u641g5/q1z3qtYOv08aPyMvnmvt8IWUvjiH7H2J7Z8D24PVNJfa1/W2NDj/wjRU/RLtumhx8a1O5ZxBem9a0j+Ub+bwHO9ll2qsH11vRyM3xpdXxteGhtZzbui5HRX0ntjrVbWg9UhmMu7V9bYypLSLzqQc+qntm8E+Y/lmVL0djS54XLsUcy+NetvZOy9Ho+vtaBwLznuekSev6u1oTOiZ9aHr7WhgtiWUcb6ut7XsqAGOnXW9rVWfURYYc0A857lFe0UZ+UkLSS0m/6A5W2P6/Ov7GOZsnpYxQjMl7dvW0xmWe1mzRMpfiMCqFS3lQP9iYfhgVRpLse2Mr1iGorK/r9PRezxqvgNaDGD18xmAK2eegIQqJ4HWOwGKW86oqzoyhdt24nCWnKygBrK1cHqLmi9njaptz6jVFZfp0Wo9Dshe5zT35uQTdkizLj10at9wHUWXhjoVDbnptdHdO7leq9rfdOLmK4h5OdNGdCLEJ2nNcapN6z1Dx1fkKU8Bhc989PzFbPOJtDYY86Rki1CWJp5mP5VHMttwX70mdI6bPwvojaK9OiWrEdOJVO6MQlW2mL3xJT1r2kd0Joc8mMYI3mMgqcwFn5phFh3z6QFZVNPeunijvlSGjus5WV1lj5vREwM9saDbxzi7sGPchVofYoYjeOp7RDmXSl2lpPFM/Ko8HU3pDTZH9EnFQioabG+iioVsirKfV6i8BjTOBo7S/Wms0lH4wRold9Rvk0fHrlXLf4VObtX5dkhzvH4212dixsR1m7gGtGr4VJefVjmwBEvrJ9vkvzaPEvm14Yg21MX1qcGZ9TKjE/+IItg5ecYJrTbX6qj2NvNTq58oTl2hzs7xNDslCxmQ/Qtgf0ppTgb0Y94dUCfobBESspE+dicuvRubrxM755j242LBtxr0fIvIli2Iv6Jrrq6c5iJHDLwPnK3MbaWTDvmCEXHNpHXXa7t590GkvidhzhKmqOfKVeL/Cf1WP2qebKzNCNQwvoFc2jrb+0gpZkEdhbTLN9sg1deU8uNShqdSar3/aZk+rki2RxEXyoO79Rg4j+iZeeEsyUjufK0P76NN2VykPF/RI472hKJ4tvsTuQOj3Ndol9ygNTegWTKBWVCUUYTq68oir/Jt5lWl7kc7/79Q17quag0pBkJncFlDrvx+RNGaKWUCs5rn70taTXatZyu9mvnMaC5OjbX8NbT+DH4rudWzH51hxSrcoDnAFPST1gi3BGs9/HjdqPBSM1PR0s+an56TqpfZcp74mq2bjrFPW1Pp0qx5I7MWqn4eGi8MGi88ddins0atRdWuLNEzZ2zRl6eVvvzacOu3oLxwUnZ7ZAoVe0hpxlJ+VMdOqu4YX6HeOWltOmmFsFrN0wBzzfsg7Wt9dXV/Xe7ugbhJvs2IPDCOX8a0SmPyuVRrc6TGFJDzp9K+mqt/QC3IfUgWFCnzPU5cMXzqNKJyVkr6C7mzpWTntUVQ95Zeyz7Kxg6o/ps15JTWRE7rUiE+pR6RlN+UI1ixSNcNnyOgzH9IPhX7Hc0xs9lbv5Og4k/oeJNXlebFkcKM9O/KvB2uRa+HRvwaUEy4kN71EGi1f8NIgTEqk2D3LHN6Q7jL8UkCe7RDsp/rdopP8WaGRNdJ6qX4vYeN4ahXz3VzbqkRq7H9Enqi1vVbt/Vw80u8Obr4nedEL6RdbSp91OXK8/lohXKXqz436WGxwlfrY0F9zMhCR3lVzEB85s2FJWrHhTE+XNqNoo387SRvIzOfTvlSVr0V5WqmgW3Mc4qXXPdAEWHz7q5avblPHOMYrtEbEtakxi0uSpiNS2V+wLS0mJW6uLYPcevFxt0oMXaiup1CUTd3C22/2UJGZP0S4crZcG9T9kElSnFnYZjCSPCN3rr40KT5GRT8HQhbdKg4+uQOe+Df7ohdsf8ebkO8knXOaAbUgrZgvBJ7h3Kc1R7NOnplUDfp+3Dw5xGDrl3Sx7STtpWdKbslN6n7039NViATkVN63bP9GEwu7pGsc2oznpgsm3s0sVDfxWk7FsXBZyRVLv58+FzDNYoTob7T1G4Mirp7BFUObXioewx+71z3bs/L5NSsr3Uuvjx4F1AnLgqHJ3/1sYru52OhMuONvH8OaB1OGqir3eJ/HYfiozm15+XLLafvmr3weOvcL5IZWfSH268Zzc1nNtdz9OeZlqPT3pKdH/t9Qas3lRqjef/00R/Vc0DxWgrOg7qlY7w5i7S8vlTwXMAmQyr+I/5xwf1thFcljTo52lBS5xT11FQPNzX1jUvb6NRnPjJpOnUyVanpOKJHN2J3xaG4CT+7pQfY9nYof5eS/yLW/v3ZMbSekPVQWXTOHAyoLaLshz5FG9Ozvj9bJzHe5eW7vX1owbPwDrXiPd+71B/v+vYrY6v/Bgmv9TsiFeNKRLJ6uqfX1RBGUD154xyQ+p5vQHfpOYvFN8+mHmeL6v7UqkRL+sR9s2BYix8aUo5ors7lWT2eHOAN+7DMDwXi19QWSjuPe66Lc7eWc3eFc07aqXJ4Y3zWfDerjsuuwWVc5s5OZb+U4mx9ntecG92r5cJ30Jvxkwb8xJCyR9p/SZFwJpqzeYsGmgspk3nCOhMqE8l6wDgzLN93c2R72sDr1GP8t2vRtw1JD0CWIeW/Azphy4heInWzT9LzTcfmTOqtBmnl9yifXd7YWv2/DNYrx9vXtzavb93f3vj8hvx/Dj4UPxU/F1dhjf9WfA7UuuKITr3/Kv4m/r7zeOePO3/a+TN3/eCCxPxYVP7t/OW/q/qpVg==</latexit>
(Y) Sliced Wasserstein projection of image color statistics Y Source image after color tra Optimal transport framework Sliced Wasserstein projection Applications Application to Color Transfer Source image (X) Sliced Wasserstein projectio image color statistics Y Optimal transport framework Sliced Wasserstein projection Applications Application to Color Transfer Source image (X) Style image (Y) Sliced Wasserstein projection of X to style image color statistics Y Source image after color transfer J. Rabin Wasserstein Regularization R´ ef´ erence Entr´ ee Sortie Transport optimal
de Léningrad, Kantorovitch est responsable de la sécurité de la Route de la vie. Il détermine la distance optimale à observer entre les voitures sur la surface gelée du lac Ladoga, en fonction de l'épaisseur de glace et de la température de l’air. En d é c e m b r e 1 9 4 1 – j a n v i e r 1 9 4 2 , Kantorovitch s'assure lui-même de la viabilité de la banquise en marchant entre les camions. Cependant bien des véhicules chargés d'approvisionnements sont détruits par les bombardements aériens nazis. En récompense de ses exploits et de son courage, les autorités attribuent à Kantorovitch l’ordre de la Guerre patriotique, et le décorent de la Médaille pour la Défense de Léningrad. Peu avant la Seconde Guerre mondiale, Leonid Kantorovitch découvre la programmation linéaire, l'optimisation linéaire et ses applications à l'optimisation de la production économique planifiée. Il est le seul chercheur soviétique à avoir reçu le « prix Nobel » d'économie (1975). Les théories de Kantorovitch ne sont publiées qu’après l'ère stalinienne. Un des apports de Kantorovitch est d'avoir incité à une meilleure prise en compte de la p r o d u c t i v i t é m a r g i n a l e d e l’investissement, afin de résoudre les difficultés liées à l’allocation des ressources au sein d’une économie socialiste.